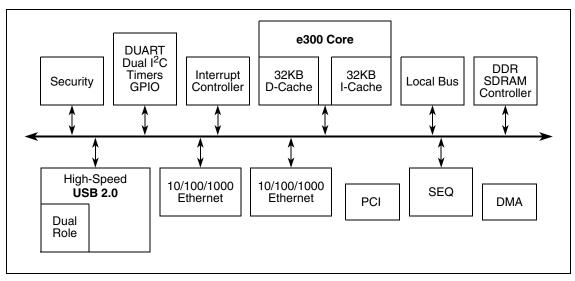
MPC8343EEC Rev. 5, 10/2005

MPC8343E PowerQUICC[™] II Pro Integrated Host Processor Hardware Specifications

The MPC8343E contains a PowerPCTM processor core with system logic required for networking, storage, and general-purpose embedded applications. For functional characteristics of the processor, refer to the *MPC8349E PowerQUICC IITM Pro Integrated Host Processor Reference Manual, Rev. 1.*

To locate any published errata or updates for this document, contact your Freescale sales office.

Contents


1.	Overview
2.	Power Characteristics
3.	Clock Input Timing 10
4.	RESET Initialization 11
5.	DDR SDRAM 14
6.	DUART
7.	Ethernet: Three-Speed Ethernet, MII Management . 22
8.	USB 30
9.	Local Bus 32
10.	JTAG 40
11.	I2C 44
12.	PCI
13.	Timers 50
14.	GPIO 51
16.	SPI 53
17.	Package and Pin Listings 55
18.	Clocking 67
19.	Thermal
20.	System Design Information 82
21.	Electrical Characteristics 87
22.	Document Revision History 91
23.	Ordering Information

© Freescale Semiconductor, Inc., 2005. All rights reserved.

```
Overview
```

This section provides a high-level overview of the MPC8343E features. Figure 1 shows the major functional units within the MPC8343E.

Figure 1. MPC8343E Block Diagram

Major features of the MPC8343E are as follows:

- Embedded PowerPC processor core; operates at up to 400 MHz
 - High-performance, superscalar processor core
 - Floating-point, integer, load/store, system register, and branch processing units
 - 32-Kbyte instruction cache, 32-Kbyte data cache
 - Lockable portion of L1 cache
 - Dynamic power management
 - Software-compatible with the other Freescale processor families that implement the PowerPC architecture
- DDR SDRAM memory controller
 - Programmable timing supporting DDR-1 SDRAM
 - 32-bit data interface, up to 333 MHz data rate
 - Four banks of memory, each up to 1 Gbyte
 - DRAM chip configurations from 64 Mbit to 1 Gbit with x8/x16 data ports
 - Full ECC support
 - Page mode support (up to 16 simultaneous open pages)
 - Contiguous or discontiguous memory mapping
 - Read-modify-write support
 - Sleep mode support for self refresh SDRAM
 - Supports auto refreshing

- On-the-fly power management using CKE
- Registered DIMM support
- 2.5-V SSTL2 compatible I/O
- Dual three-speed (10/100/1000) Ethernet controllers (TSECs)
 - Dual IEEE 802.3, 802.3u, 820.3x, 802.3z, 802.3 AC compliant controllers
 - Support for different Ethernet physical interfaces:
 - 1000 Mbps IEEE 802.3 RGMII, 802.3z RTBI, full-duplex
 - 10/100 Mbps IEEE 802.3 MII full- and half-duplex
 - Buffer descriptors are backwards compatible with MPC8260 and MPC860T 10/100 programming models
 - 9.6-Kbyte jumbo frame support
 - RMON statistics support
 - Internal 2-Kbyte transmit and 2-Kbyte receive FIFO's per TSEC module
 - MII management interface for control and status
 - Programmable CRC generation and checking
- PCI interface
 - PCI specification Revision 2.2 compatible
 - Data bus width:
 - 32-bit data PCI interface that operates at up to 66 MHz, or
 - PCI 3.3-V compatible
 - PCI host bridge capabilities
 - PCI agent mode supported on PCI interface
 - Support for PCI to memory and memory to PCI streaming
 - Memory prefetching of PCI read accesses and support for delayed read transactions
 - Support for posting of processor to PCI and PCI to memory writes
 - On-chip arbitration, supporting 5 masters on PCI
 - Support for accesses to all PCI address spaces
 - Parity supported
 - Selectable hardware-enforced coherency
 - Address translation units for address mapping between host and peripheral
 - Dual address cycle support when target
 - Internal configuration registers accessible from PCI
- Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, 802.11i, iSCSI, and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units (EUs). The execution units are:
 - Public key execution unit (PKEU) supporting the following:
 - RSA and Diffie-Hellman
 - Programmable field size up to 2048-bits

- Elliptic curve cryptography
- F2m and F(p) modes
- Programmable field size up to 511 bits
- Data encryption standard execution unit (DEU)
 - DES, 3DES
 - Two key (K1, K2) or three key (K1, K2, K3)
 - ECB and CBC modes for both DES and 3DES
- Advanced encryption standard unit (AESU)
 - Implements the Rinjdael symmetric key cipher
 - Key lengths of 128, 192, and 256 bits. Two key
 - ECB, CBC, CCM, and counter modes
- ARC four execution unit (AFEU)
 - Implements a stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
- Message digest execution unit (MDEU)
 - SHA with 160- or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
- Random number generator (RNG)
- Four crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units via an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Universal serial bus (USB) dual role controller
 - Supports USB on-the-go mode, which includes both device and host functionality
 - Complies with USB specification Rev. 2.0
 - Supports operation as a stand-alone USB device
 - Supports one upstream facing port
 - Supports six programmable USB endpoints
 - Supports operation as a stand-alone USB host controller
 - Supports USB root hub with one downstream-facing port
 - Enhanced host controller interface (EHCI) compatible
 - Supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
 - Supports external PHY with UTMI, serial and UTMI+ low-pin interface (ULPI)
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 133 MHz
 - Four chip selects support four external slaves
 - Up to eight-beat burst transfers

- 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller
- Three protocol engines available on a per chip select basis:
 - General-purpose chip select machine (GPCM)
 - Three user programmable machines (UPMs)
 - Dedicated single data rate SDRAM controller
- Parity support
- Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)
- Programmable interrupt controller (PIC)
 - Functional and programming compatibility with the MPC8260 interrupt controller
 - Support for 8 external and 35 internal discrete interrupt sources
 - Support for 1 external (optional) and 7 internal machine checkstop interrupt sources
 - Programmable highest priority request
 - Four groups of interrupts with programmable priority
 - External and internal interrupts directed to host processor
 - Redirects interrupts to external INTA pin when in core disable mode.
 - Unique vector number for each interrupt source
- Dual industry-standard I²C interfaces
 - Two-wire interface
 - Multiple master support
 - Master or slave I^2C mode support
 - On-chip digital filtering rejects spikes on the bus
 - System initialization data is optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - All channels accessible by local core and remote PCI masters
 - Misaligned transfer capability
 - Data chaining and direct mode
 - Interrupt on completed segment and chain
- DUART
 - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- Serial peripheral interface (SPI)
 - Master or slave support
- General-purpose parallel I/O (GPIO)
 - parallel I/O pins multiplexed on various chip interfaces

- System timers
 - Periodic interrupt timer
 - Real-time clock
 - Software watchdog timer
 - Eight general-purpose timers
- IEEE 1149.1 compliant, JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

2 **Power Characteristics**

The estimated typical power dissipation for this family of MPC8343E devices is shown in Table 1.

	Core Frequency (MHz)	CSB Frequency (MHz)	Typical at T _J = 65	Typical ^{2, 3}	Maximum ⁴	Unit
	266	266	1.3	1.6	1.8	W
		133	1.1	1.4	1.6	W
PBGA	400	266	1.5	1.9	2.1	W
FBGA		133	1.4	1.7	1.9	W
	400	200	1.5	1.8	2.0	W
		100	1.3	1.7	1.9	W

Table 1. MPC8343E Power Dissipation¹

¹ The values do not include I/O supply power (OVDD, LVDD, GVDD) or AVDD. For IO power values, see Table 2.

² Typical power is based on a voltage of Vdd = 1.2 V, a junction temperature of T_J = 105 C, and a Dhrystone benchmark application.

 3 Thermal solutions will likely need to design to a value higher than typical power based on the end application, $T_{\rm A}$ target, and I/O power.

⁴ Maximum Power is based on a voltage of Vdd = 1.2 V, worst case process, a junction temperature of T_J = 105 C, and an artificial smoke test.

Table 2 shows the typical I/O power dissipation for MPC8343E.

Interface	Parameter	GVDD (2.5 V)	OVDD (3.3 V)	LVDD (3.3V)	LVDD (2.5V)	Unit	Comments
DDR I/O	200 MHz, 3-bit	0.42				W	
65% utilization 2.5 V	266 MHz, 32-bit	0.5				W	
Rs = 20 Ω	300 MHz, 32-bit	0.54				W	
Rt = 50 Ω 2 pair of clocks	333 MHz, 32-bit	0.58				W	
	33 MHz, 32-bit		0.04			W	
PCI I/O load = 30pf	66 MHz, 32-bit		0.07			W	
	167 MHz, 32-bit		0.34			W	
	133 MHz, 32-bit		0.27			W	
Local Bus I/O Load = 25 pf	83 MHz, 32-bit		0.17			W	
2000 – 20 pi	66 MHz, 32-bit		0.14			W	
	50 MHz, 32-bit		0.11			W	

Table 2. MPC8343 Typical I/O Power Dissipation

Power Characteristics

Interface	Parameter	GVDD (2.5 V)	OVDD (3.3 V)	LVDD (3.3V)	LVDD (2.5V)	Unit	Comments
	MII			0.01		W	Mutiply by number of
TSEC I/O Load = 25 pf	GMII or TBI			0.06		W	interfaces used.
	RGMII or RTBI				0.04	W	
USB	12 MHz		0.01			W	
USB	480 MHz		0.2			W	
Other I/O			0.01			W	

Table 2. MPC8343 Typical I/O Power Dissipation (continued)

Clock Input Timing

3 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the MPC8343E.

3.1 DC Electrical Characteristics

Table 4 provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the MPC8343E.

Parameter	Condition	Symbol	Min	Мах	Unit
Input high voltage	—	V _{IH}	2.7	OV _{DD} +0.3	V
Input low voltage	—	V _{IL}	-0.3	0.4	V
CLKIN Input current	$0V \leq V_{IN} \leq OVDD$	I _{IN}	—	+/-±10	μA
PCI_SYNC_IN Input current	$\begin{array}{l} 0V \leq \!$	I _{IN}	_	+/-±10	μA
PCI_SYNC_IN Input current	$0.5V \leq \!$	I _{IN}	—	+/-±50	μA

 Table 3. CLKIN DC Electrical Characteristics

3.2 AC Electrical Characteristics

The primary clock source for the MPC8343E can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Table 4 provides the clock input (CLKIN/PCI_CLK) AC timing specifications for the MPC8343E.

 Table 4. CLKIN AC Timing Specifications

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
CLKIN/PCI_CLK frequency	f _{CLKIN}	—	—	66	MHz	1
CLKIN/PCI_CLK cycle time	t _{CLKIN}	15	—	_	ns	_
CLKIN/PCI_CLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	1.2	ns	2
CLKIN/PCI_CLK duty cycle	t _{KHK} /t _{CLKIN}	40	—	60	%	3
CLKIN/PCI_CLK jitter	—	—	—	+/- 150	ps	4, 5

Notes:

1. **Caution:** The system, core, USB, security, and TSEC must not exceed their respective maximum or minimum operating frequencies.

2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 V and 2.7 V.

3. Timing is guaranteed by design and characterization.

4. This represents the total input jitter—short term and long term—and is guaranteed by design.

5. The CLKIN/PCI_CLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.

Unit

v

٧

μA

V

V

٧

0.8

±5

0.5

0.4

-0.3

2.4

4 **RESET** Initialization

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8343E.

4.1 **RESET DC Electrical Characteristics**

Table 5 provides the DC electrical characteristics for the RESET pins of the MPC8343E.

VIL

 I_{IN}

 V_{OH}

Vol

VOL

Characteristic	Symbol	Condition	Min	Мах
Input high voltage	V _{IH}		2.0	OV _{DD} +0.3

 $I_{OH} = -8.0 \text{ mA}$

 $I_{OI} = 8.0 \text{ mA}$

 $I_{OI} = 3.2 \text{ mA}$

 Table 5. RESET Pins DC Electrical Characteristics

Notes:

Input low voltage

Output high voltage

Output low voltage

Output low voltage

Input current

1. This table applies for pins PORESET, HRESET, SRESET and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

4.2 **RESET AC Electrical Characteristics**

Table 6 provides the reset initialization AC timing specifications of the MPC8343E.

Table 6. RESET Initialization Timing Specifications

Parameter/Condition	Min	Мах	Unit	Notes
Required assertion time of HRESET or SRESET (input) to activate reset flow	32	—	t _{PCI_SYNC_IN}	1
Required assertion time of PORESET with stable clock applied to CLKIN when the MPC8343E is in PCI host mode	32	_	^t CLKIN	2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the MPC8343E is in PCI agent mode	32		^t PCI_SYNC_IN	1
HRESET/SRESET assertion (output)	512	—	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16	—	t _{PCI_SYNC_IN}	1
Input setup time for POR config signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8343E is in PCI host mode	4	_	^t CLKIN	2

Input setup time for POR config signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8343E is in PCI agent mode	4	_	^t PCI_SYNC_IN	1
Input hold time for POR config signals with respect to negation of HRESET	0	_	ns	
Time for the MPC8343Eto turn offPOR config signals with respect to the assertion of HRESET	_	4	ns	3
Time for the MPC8343Eto turn on POR config signals with respect to the negation of $\overline{\text{HRESET}}$	1	_	t _{PCI_SYNC_IN}	1, 3

Table 6. RESET Initialization Timing Specifications (continued)

Notes:

- 1. tPCI_SYNC_IN is the clock period of the input clock applied to PCI_SYNC_IN. When the MPC8343E is In PCI host mode the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. See the *MPC8349E Integrated Host Processor Reference Manual Rev. 0* for more details.
- 2. tCLKIN is the clock period of the input clock applied to CLKIN. It is only valid when the MPC8343E is in PCI host mode. See the *MPC8349E Integrated Host Processor Reference Manual Rev. 0* for more details.
- 3. POR config signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.

Table 7 provides the PLL and DLL lock times.

Table 7. PLL and DLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
PLL lock times	—	100	μs	
DLL lock times	7680	122,880	csb_clk cycles	1, 2

Notes:

1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 18, "Clocking," for more information.

RESET Initialization

5 DDR SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8343E.

5.1 DDR SDRAM DC Electrical Characteristics

Table 8 provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8343E.

Parameter/Condition	Symbol	Min	Max	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} - 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	
Output leakage current	I _{OZ}	-10	10	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2	_	mA	
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	
MV _{REF} input leakage current	I _{VREF}	—	5	μA	

Table 8. DDR SDRAM DC Electrical Characteristics

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to be equal to $0.5 \times GV_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.
- 4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 9 provides the DDR capacitance.

Table 9. DDR SDRAM Capacitance

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 2.5 V ± 0.125 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak to peak) = 0.2 V.

5.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

5.2.1 DDR SDRAM Input AC Timing Specifications

Table 10 provides the input AC timing specifications for the DDR SDRAM interface.

Table 10. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 2.5 V \pm 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V	
AC input high voltage	V _{IH}	MV _{REF} + 0.31	GV _{DD} + 0.3	V	
MDQS—MDQ/MECC input skew per byte	t _{DISKEW}	_		ps	1
333 MHz			750		
266 MHz			1125		

Note:

5.2.2 DDR SDRAM Output AC Timing Specifications

Table 11 and Table 12 provide the output AC timing specifications and measurement conditions for the DDR SDRAM interface.

Table 11. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol ¹	Min	Max	Unit	Notes
MCK[n] cycle time, (MCK[n]/MCK[n] crossing)	t _{MCK}	6	10	ns	2
Skew between any MCK to ADDR/CMD 333 MHz 266 MHz 200 MHz	t _{aoskew}	-1000 -1100 -1200	200 300 400	ps	3
ADDR/CMD output setup with respect to MCK 333 MHz 266 MHz 200 MHz	t _{DDKHAS}	2.8 3.45 4.6	_	ns	4
ADDR/CMD output hold with respect to MCK 333 MHz 266 MHz 200 MHz	^t DDKHAX	2.0 2.65 3.8	_	ns	4

^{1.} Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if 0 <= n <= 7) or ECC (MECC[{0...7}] if n = 8).

DDR SDRAM

Table 11. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued) At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCS(n) output setup with respect to MCK 333 MHz 266 MHz 200 MHz	t _{DDKHCS}	2.8 3.45 4.6		ns	4
MCS(n) output hold with respect to MCK 333 MHz 266 MHz 200 MHz	t _{DDKHCX}	2.0 2.65 3.8	_	ns	4
MCK to MDQS 333 MHz 266 MHz 200 MHz	^t DDКНМН	-0.9 -1.1 -1.2	0.3 0.5 0.6	ns	5
MDQ/MECC/MDM output setup with respect to MDQS 333 MHz 266 MHz 200 MHz	^t DDKHDS, ^t DDKLDS	900 900 1200	_	ps	6
MDQ/MECC/MDM output hold with respect to MDQS 333 MHz 266 MHz 200 MHz	^t ddkhdx, ^t ddkldx	900 900 1200	_	ps	6

Table 11. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued) At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MDQS preamble start	t _{DDKHMP}	$-0.25 \times t_{MCK} - 0.9$	-0.25 \times t_{MCK} +0.3	ns	7
MDQS epilogue end	t _{DDKLME}	-0.9	0.3	ns	7

Notes:

 The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.

- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ± 0.1 V.
- In the source synchronous mode, MCK/MCK can be shifted in 1/4 applied cycle increments through the Clock Control Register. For the skew measurements referenced for t_{AOSKEW} it is assumed that the clock adjustment is set to align the address/command valid with the rising edge of MCK.
- 4. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle.
- 5. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. In source synchronous mode, this will typically be set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8349E Integrated Host Processor Preliminary Reference Manual Rev.0 for a description and understanding of the timing modifications enabled by use of these bits.
- Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the MPC8343E.
- 7. All outputs are referenced to the rising edge of MCK(n) at the pins of the MPC8343E. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

DDR SDRAM

Figure 2 shows the DDR SDRAM output timing for address skew with respect to any MCK.

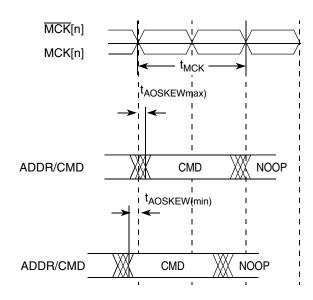


Figure 2. Timing Diagram for tAOSKEW Measurement

Figure 3 provides the AC test load for the DDR bus.

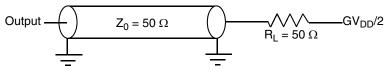


Figure 3. DDR AC Test Load

Table 12 shows the DDR SDRAM measurement conditions.

Table 12. DDR SDRAM Measurement Conditions

Symbol	DDR	Unit	Notes
V _{TH}	MV _{REF} ± 0.31 V	V	1
V _{OUT}	$0.5\times \text{GV}_{\text{DD}}$	V	2

Notes:

1. Data input threshold measurement point.

2. Data output measurement point.

Figure 4 shows the DDR SDRAM output timing diagram for source synchronous mode.

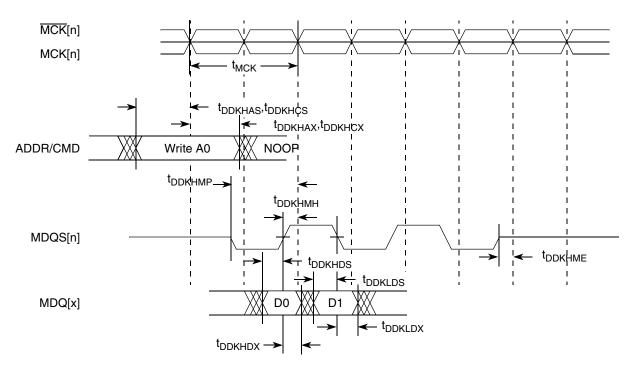


Figure 4. DDR SDRAM Output Timing Diagram for Source Synchronous Mode

Table 13 provides approximate delay information that can be expected for the address and command signals of the DDR controller for various loadings, which can be useful for a system utilizing the DLL. These numbers are the result of simulations for one topology. The delay numbers will strongly depend on the topology used. These delay numbers show the total delay for the address and command to arrive at the DRAM devices. The actual delay could be different than the delays seen in simulation, depending on the system topology. If a heavily loaded system is used, the DLL loop may need to be adjusted to meet setup requirements at the DRAM.

Load	Delay	Unit
4 devices (12 pF)	3.0	ns
9 devices (27 pF)	3.6	ns
36 devices (108 pF) + 40 pF compensation capacitor	5.0	ns
36 devices (108 pF) + 80 pF compensation capacitor	5.2	ns

DUART

6 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8343E.

6.1 DUART DC Electrical Characteristics

Table 14 provides the DC electrical characteristics for the DUART interface of the MPC8343E.

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current (0.8V \leq V _{IN} \leq 2V)	I _{IN}	—	+/- 5	μΑ
High-level output voltage, I _{OH} = -100 μA	V _{OH}	OV _{DD} - 0.2	_	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V

Table 14. DUART DC Electrical Characteristics

Note:

1. Note that the symbol $V_{\rm IN}$ in this case, represents the ${\rm OV}_{\rm IN}$ symbol referenced in Table 55 and Table 56.

6.2 DUART AC Electrical Specifications

Table 15 provides the AC timing parameters for the DUART interface of the MPC8343E.

Table 15. DUART AC Timing Specifications

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	
Maximum baud rate	> 1,000,000	baud	1
Oversample rate	16		2

Notes:

1. Actual attainable baud rate will be limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

7 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

7.1 Three-Speed Ethernet Controller (TSEC) (10/100/1000 Mbps)—MII/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all the MII (media independent interface), RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except MDIO (management data input/output) and MDC (management data clock). The MII interface is defined for 3.3Vwhile the RGMII and RTBI interfaces can be operated at 3.3 or 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 7.3, "Ethernet Management Interface Electrical Characteristics."

7.1.1 TSEC DC Electrical Characteristics

All MII, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 16 and Table 17. The potential applied to the input of a MII, RGMII, or RTBI receiver may exceed the potential of the receiver's power supply. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Conditi	ions	Min	Max	Unit
Supply voltage 3.3 V	LV _{DD} ²	_		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	LV _{DD} = Min	2.40	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	_	_	2.0	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	—	-0.3	0.90	V
Input high current	I _{IH}	V _{IN} ¹ = L	V _{DD}	—	40	μA
Input low current	I _{IL}	V _{IN} ¹ = 0	GND	-600	—	μA

Table 16. and MII DC Electrical Characteristics

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 55 and Table 56.

2. MII pins that are not needed for RGMII or RTBI operation are powered by OVDD supply.

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	—		2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$LV_{DD} = Min$	2.00	$LV_{DD} + 0.3$	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	$LV_{DD} + 0.3$	V
Input low voltage	V _{IL}	—	LV _{DD} =Min	-0.3	0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		—	10	μA
Input low current	Ι _{ΙL}	V _{IN} ¹ =	= GND	-15	_	μA

Table 17. RGMII/RTBI (When Operating at 2.5 V), DC Electrical Characteristics

Note:

1. Note that the symbol V_{IN}, in this case, represents the LV_{IN} symbol referenced in Table 55and Table 56.

7.2 MII, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for MII, RGMII, and RTBI are presented in this section.

7.2.1 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

7.2.1.1 MII Transmit AC Timing Specifications

Table 18 provides the MII transmit AC timing specifications.

Table 18. MII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD} / OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	_	400	_	ns
TX_CLK clock period 100 Mbps	t _{MTX}	_	40	_	ns
TX_CLK duty cycle	t _{MTXH/} t _{MTX}	35	_	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise V _{IL} (min) to V _{IH} (max)	t _{MTXR}	1.0	_	4.0	ns
TX_CLK data clock fall $V_{IH}(max)$ to $V_{IL}(min)$	t _{MTXF}	1.0		4.0	ns

Note:

The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

Ethernet: Three-Speed Ethernet, MII Management

Figure 5 shows the MII transmit AC timing diagram.

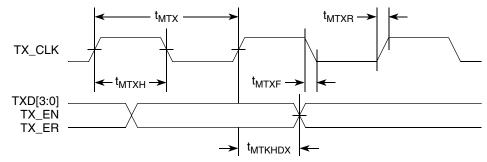


Figure 5. MII Transmit AC Timing Diagram

7.2.1.2 MII Receive AC Timing Specifications

Table 19 provides the MII receive AC timing specifications.

Table 19. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD} / OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	_	400	_	ns
RX_CLK clock period 100 Mbps	t _{MRX}	_	40	_	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	_	_	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	_	_	ns
RX_CLK clock rise V _{IL} (min) to V _{IH} (max)	t _{MRXR}	1.0	_	4.0	ns
RX_CLK clock fall time $V_{IH}(max)$ to $V_{IL}(min)$	t _{MRXF}	1.0	_	4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

Figure 6 provides the AC test load for TSEC.

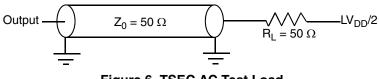


Figure 6. TSEC AC Test Load

Figure 7 shows the MII receive AC timing diagram.

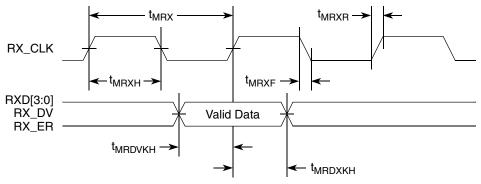


Figure 7. MII Receive AC Timing Diagram

7.2.2 RGMII and RTBI AC Timing Specifications

Table 20 presents the RGMII and RTBI AC timing specifications.

Table 20. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
Data to clock output skew (at transmitter)	t _{SKRGT}	-0.5	_	0.5	ns
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0	_	2.8	ns
Clock cycle duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ^{4, 5}	t _{RGTH} /t _{RGT}	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 5}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	_	_	0.75	ns
Fall time (20%–80%)	t _{RGTF}	_	_	0.75	ns
GTX_CLK125 reference clock period	t _{G12} 6	_	8.0	—	ns
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	47	_	53	%

Notes:

- Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).
- 2. This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns will be added to the associated clock signal.
- 3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.
- 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.
- 5. Duty cycle reference is $L_{Vdd}/2$.
- 6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.

Figure 8 shows the RBMII and RTBI AC timing and multiplexing diagrams.

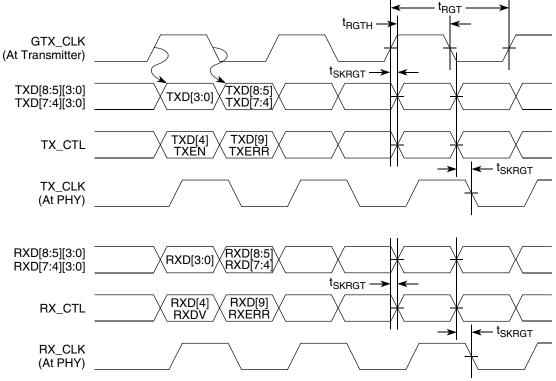


Figure 8. RGMII and RTBI AC Timing and Multiplexing Diagrams

7.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 7.1, "Three-Speed Ethernet Controller (TSEC) (10/100/1000 Mbps)—MII/RGMII/RTBI Electrical Characteristics."

7.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 2.5V or 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 21 and Table 22.

Parameter	Symbol	Conditions		Min	Max	Unit
Supply voltage (2.5 V)	LV _{DD}	—		2.37	2.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$	$LV_{DD} = Min$	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$LV_{DD} = Min$	GND - 0.3	0.40	V
Input high voltage	V _{IH}	—	$LV_{DD} = Min$	1.7	_	V
Input low voltage	V _{IL}	—	$LV_{DD} = Min$	-0.3	0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		_	10	μA
Input low current	IIL	V _{IN} =	LV _{DD}	-15	_	μA

Table 21. MII Management DC Electrical Characteristics when powered at 2.5V

Note:

1. Note that the symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 55 and Table 56.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (3.3 V)	LV _{DD}	—		2.97	3.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$	$LV_{DD} = Min$	2.10	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$LV_{DD} = Min$	GND	0.50	V
Input high voltage	V _{IH}	-	_	2.00	—	V
Input low voltage	V _{IL}	-	_	_	0.80	V
Input high current	I _{IH}	$LV_{DD} = Max$ V_{IN} ¹ = 2.1 V		_	40	μA
Input low current	IIL	LV _{DD} = Max	V _{IN} = 0.5 V	-600	—	μA

Table 22	MII Management	DC Electrical	Characteristics	whon i	nowered at 3 3V
Table ZZ.	win wanagement	DC Electrical	Characteristics	when	powered at 3.3v

Note:

1. Note that the symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 55 and Table 56.

7.3.2 MII Management AC Electrical Specifications

Table 23 provides the MII management AC timing specifications.

Table 23. MII Management AC Timing Specifications

At recommended operating conditions with LV_{DD} is 3.3 V ± 10% or 2.5 V ± 5%

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}	—	2.5		MHz	2
MDC period	t _{MDC}	—	400	—	ns	
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	
MDC to MDIO delay	t _{MDKHDX}	10	—	70	ns	3
MDIO to MDC setup time	t _{MDDVKH}	5	_	_	ns	
MDIO to MDC hold time	t _{MDDXKH}	0	_	_	ns	
MDC rise time	t _{MDCR}	_	_	10	ns	
MDC fall time	t _{MDHF}			10	ns	

Notes:

The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

- 2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz).
- 3. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the delay is 70 ns and for a csb_clk of 333 MHz, the delay is 58 ns).

Figure 9 shows the MII management AC timing diagram.

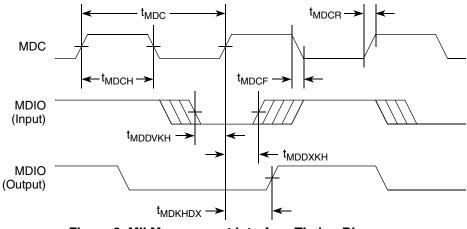


Figure 9. MII Management Interface Timing Diagram

USB

8 USB

This section provides the AC and DC electrical specifications for the USB interface of the MPC8343E.

8.1 USB DC Electrical Characteristics

Table 24 provides the DC electrical characteristics for the USB interface.

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current	I _{IN}	—	±5	μA
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.2	—	V
Low-level output voltage, I _{OL} = 100 μΑ	V _{OL}	—	0.2	V

Table 24. USB DC Electrical Characteristics

Note:

1. Note that the symbol $V_{\rm IN}$ in this case, represents the ${\rm OV}_{\rm IN}$ symbol referenced in Table 55 and Table 56.

8.2 USB AC Electrical Specifications

Table 25 describes the general timing parameters of the USB interface of the MPC8343E.

Table 25. USB General Timing Parameters

Parameter	Symbol ¹	Min	Мах	Unit	Notes
usb clock cycle time	t _{USCK}	15		ns	
Input setup to usb clock - all inputs	t _{USIVKH}	4		ns	
input hold to usb clock - all inputs	t _{USIXKH}	1		ns	

Parameter	Symbol ¹	Min	Max	Unit	Notes
usb clock to output valid - all outputs	t _{USKHOV}	_	7	ns	
Output hold from usb clock - all outputs	t _{USKHOX}	2	—	ns	

Table 25. USB General Timing Parameters (continued)

Notes:

1. The symbols used for timing specifications herein follow the pattern of t(First two letters of

functional block)(signal)(state) (reference)(state) for inputs and t_{(First two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{USIXKH} symbolizes usb timing (US) for the input (I) to go invalid (X) with respect to the time the usb clock reference (K) goes high (H). Also, t_{USKHOX} symbolizes usb timing (US) for the usb clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.

- 2. All timings are in reference to usb clock.
- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of usb clock to 0.4 \times OV_{DD} of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

Figure 10 and Figure 11 provide the AC test load and signals for the USB, respectively.

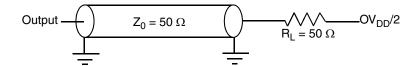
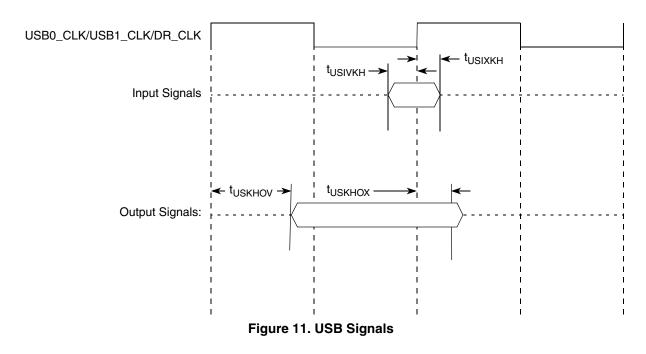



Figure 10. USB AC Test Load

9 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8343E.

9.1 Local Bus DC Electrical Characteristics

Table 26 provides the DC electrical characteristics for the local bus interface.

Table 26. Local Bus DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current	I _{IN}	—	±5	μA
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.2	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V

9.2 Local Bus AC Electrical Specification

Table 27 and Table 28 describe the general timing parameters of the local bus interface of the MPC8343E.Table 27. Local Bus General Timing Parameters—DLL on

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	_	ns	2
Input setup to local bus clock (except LUPWAIT)	t _{LBIVKH1}	1.5	—	ns	3, 4
LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.7	_	ns	3, 4
Input hold from local bus clock (except LUPWAIT)	t _{LBIXKH1}	1.0	—	ns	3, 4
LUPWAIT Input hold from local bus clock	t _{LBIXKH2}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	_	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	—	ns	7
Local bus clock to LALE rise	t _{lbkhlr}	_	4.5	ns	

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	_	4.5	ns	
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	_	4.5	ns	3
Local bus clock to address valid for LAD	t _{lbkhov3}	_	4.5	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	1	—	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	1	—	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	—	3.8	ns	

Table 27. Local Bus General Timing Parameters—DLL on (continued)

Notes:

The symbols used for timing specifications herein follow the pattern of t<sub>(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t<sub>(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub></sub>

2. All timings are in reference to rising edge of LSYNC_IN.

- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5.t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10pF less than the load on LAD output pins.
- 6.t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10pF less than the load on LAD output pins.
- 7.t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.

 For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	15	—	ns	2
Input setup to local bus clock	t _{LBIVKH}	7	—	ns	3, 4
Input hold from local bus clock	t _{LBIXKH}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5

Parameter	Symbol ¹	Min	Max	Unit	Notes
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	—	ns	7
Local bus clock to output valid	t _{LBKHOV}	_	3	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	_	4	ns	

 Table 28. Local Bus General Timing Parameters—DLL bypass (continued)

Notes:

The symbols used for timing specifications herein follow the pattern of t_(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus

timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.

- 2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs).
- 3. All signals are measured from OV_{DD}/2 of the rising/falling edge of LCLK0 to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5.t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10pF less than the load on LAD output pins.
- 6.t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10pF less than the load on LAD output pins.
- 7.t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 9. DLL bypass mode is not recommended for use at frequencies above 66MHz.

Figure 12 provides the AC test load for the local bus.

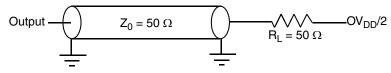


Figure 12. Local Bus C Test Load

Figure 13 through Figure 18 show the local bus signals.

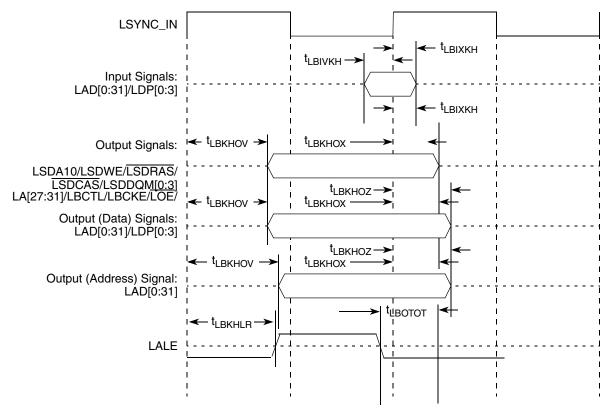


Figure 13. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)

Local Bus

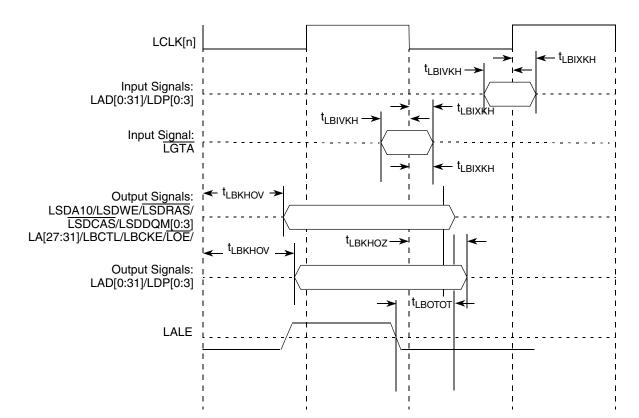


Figure 14. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)

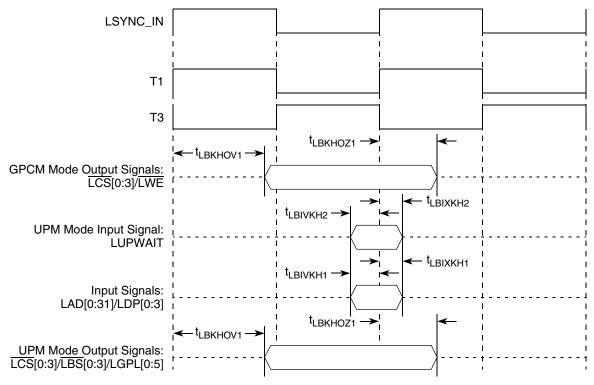


Figure 15. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)

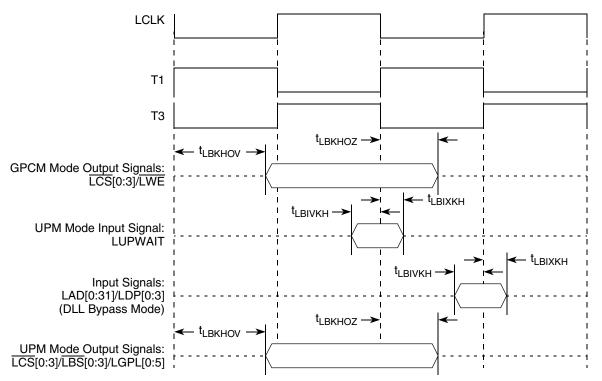


Figure 16. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)

Local Bus

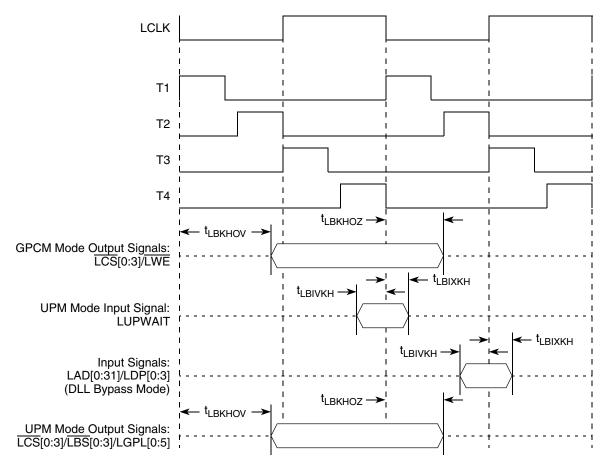


Figure 17. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Bypass Mode)

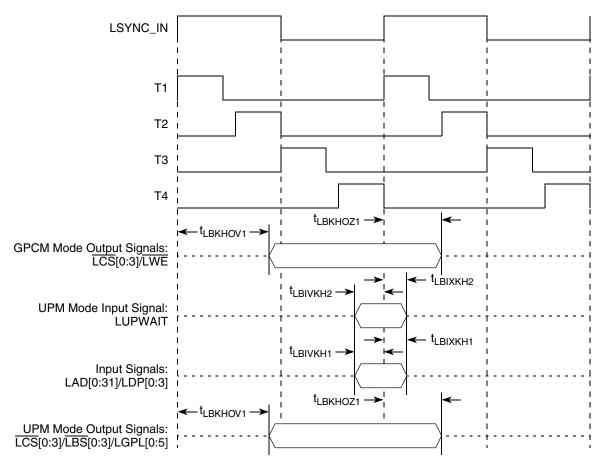


Figure 18. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Enabled)

10 JTAG

JTAG

This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8343E.

10.1 JTAG DC Electrical Characteristics

Table 29 provides the DC electrical characteristics for the IEEE 1149.1 (JTAG) interface of the MPC8343E.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		2.5	OV _{DD} +0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 29. JTAG interface DC Electrical Characteristics

10.2 JTAG AC Timing Specifications

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8343E.

Table 30 provides the JTAG AC timing specifications as defined in Figure 20 through Figure 23.

Table 30. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 56).

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	
JTAG external clock cycle time	t _{JTG}	30	—	ns	
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	—	ns	
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4		ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns	4
Valid times: Boundary-scan data TDO	t _{jtkldv} t _{jtklov}	2 2	11 11	ns	5

MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 5

40

Table 30. JTAG AC Timing Specifications (Independent of CLKIN)¹ (continued)

At recommended operating conditions (see Table 56).

Parameter	Symbol ²	Min	Мах	Unit	Notes
Output hold times: Boundary-scan data TDO	t _{JTKLDX} t _{JTKLOX}	2 2		ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO	^t jtkldz t _{jtkloz}	2 2	19 9	ns	5, 6

Notes:

- 1. All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50- Ω load (see Figure 19). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK}.
- 6. Guaranteed by design and characterization.

Figure 19 provides the AC test load for TDO and the boundary-scan outputs of the MPC8343E.

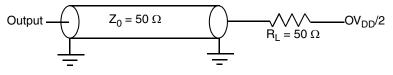
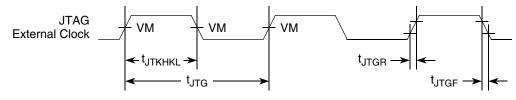
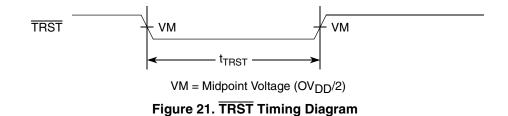



Figure 19. AC Test Load for the JTAG Interface

Figure 20 provides the JTAG clock input timing diagram.



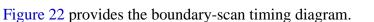

VM = Midpoint Voltage (OV_{DD}/2)

Figure 20. JTAG Clock Input Timing Diagram

JTAG

Figure 21 provides the $\overline{\text{TRST}}$ timing diagram.

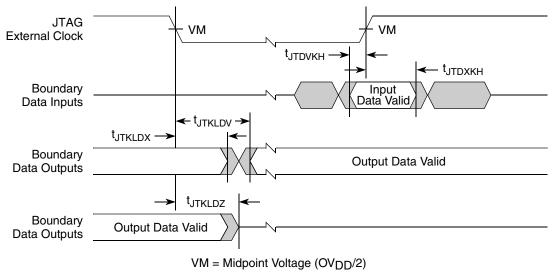
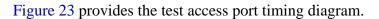
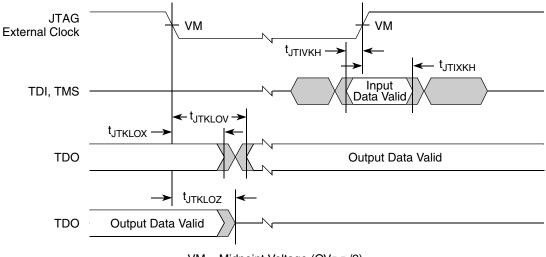




Figure 22. Boundary-Scan Timing Diagram

 $VM = Midpoint Voltage (OV_{DD}/2)$

I2C

11 I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8343E.

11.1 I²C DC Electrical Characteristics

Table 31 provides the DC electrical characteristics for the I²C interface of the MPC8343E.

Table 31. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 \times OV_{DD}$	OV _{DD} + 0.3	V	
Input low voltage level	V _{IL}	-0.3	$0.3\times \text{OV}_{\text{DD}}$	V	
Low level output voltage	V _{OL}	0	$0.2\times\text{OV}_{\text{DD}}$	V	1
Output fall time from $V_{IH}(min)$ to $V_{IL}(max)$ with a bus capacitance from 10 to 400 pF	^t I2KLKV	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between 0.1 \times OV $_{DD}$ and 0.9 \times OV $_{DD}(max)$	I	-10	10	μA	4
Capacitance for each I/O pin	Cl	—	10	pF	

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. C_B = capacitance of one bus line in pF.

3. Refer to the MPC8349E Integrated Host Processor Reference Manual Rev.0 for information on the digital filter used.

4. I/O pins will obstruct the SDA and SCL lines if OV_{DD} is switched off.

11.2 I²C AC Electrical Specifications

Table 32 provides the AC timing parameters for the I²C interface of the MPC8343E. Note that all values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 31).

Table 32. I²C AC Electrical Specifications

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL}	1.3	—	μs
High period of the SCL clock	t _{l2CH}	0.6	—	μs
Setup time for a repeated START condition	t _{I2SVKH}	0.6	—	μs
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	—	μS
Data setup time	t _{i2DVKH}	100	—	ns

Parameter	Symbol ¹	Min	Мах	Unit
Data hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	0 ²	0.9 ³	μs
Rise time of both SDA and SCL signals	t _{I2CR}	20 + 0.1 C _b ⁴	300	ns
Fall time of both SDA and SCL signals	t _{I2CF}	20 + 0.1 C _b ⁴	300	ns
Set-up time for STOP condition	t _{I2PVKH}	0.6	_	μS
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μS
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	—	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$	_	V

Table 32. I²C AC Electrical Specifications (continued)

Notes:

- 1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{I2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I²C timing the valid state (V) relative to the t_{I2C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{I2C} clock reference (K) going to the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. MPC8343E provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t_{12DVKH} has only to be met if the device does not stretch the LOW period (t_{12CL}) of the SCL signal.
- 4. C_B = capacitance of one bus line in pF.

Figure 24 provides the AC test load for the I^2C .

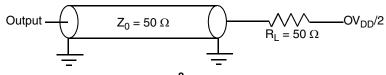
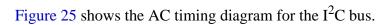



Figure 24. I²C AC Test Load

I2C

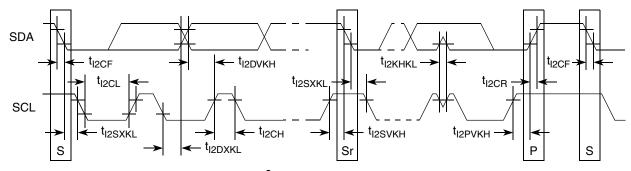


Figure 25. I²C Bus AC Timing Diagram

PCI

12 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8343E.

12.1 PCI DC Electrical Characteristics

Table 33 provides the DC electrical characteristics for the PCI interface of the MPC8343E.

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	$V_{OUT} \le V_{OL}$ (max)	-0.3	0.8	V
Input current	I _{IN}	$V_{IN}^2 = 0 V \text{ or } V_{IN} = V_{DD}$	—	±5	μA
High-level output voltage	V _{OH}	OV _{DD} = min, I _{OH} = −100 μA	OV _{DD} – 0.2	_	V
Low-level output voltage	V _{OL}	OV _{DD} = min, I _{OL} = 100 μA	_	0.2	V

Table 33. PCI DC Electrical Characteristics ¹

Notes:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 55 and Table 56.

12.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8343E. Note that the PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8343E is configured as a host or agent device. Table 34 provides the PCI AC timing specifications at 66 MHz.

Table 34. PCI AC Timing Specifications at 66 MHz⁶

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Clock to output valid	^t PCKHOV	_	6.0	ns	2
Output hold from Clock	t _{PCKHOX}	1	—	ns	2
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	2, 3

Parameter	Symbol ¹	Min	Max	Unit	Notes
Input setup to Clock	t _{PCIVKH}	3.0	_	ns	2, 4
Input hold from Clock	t _{PCIXKH}	0	_	ns	2, 4

Notes:

- 1. Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 6. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to User Manual, PCI chapter, description of M66EN paragraph.

Table 35 provides the PCI AC timing specifications at 33 MHz.

Table 35	. PCI AC	Timing	Specifications	at 33 MHz
----------	----------	--------	-----------------------	-----------

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	^t PCKHOV	_	11	ns	2
Output hold from Clock	t _{РСКНОХ}	2	_	ns	2
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to Clock	t _{PCIVKH}	3.0	_	ns	2, 4
Input hold from Clock	t _{PCIXKH}	0		ns	2, 4

Notes:

1. Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional}

block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS} , reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.

- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

Figure 26 provides the AC test load for PCI.

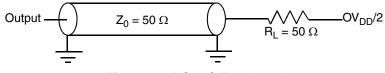


Figure 26. PCI AC Test Load

Figure 27 shows the PCI input AC timing diagram.

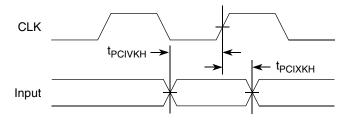


Figure 27. PCI Input AC Timing Diagram

Figure 28 shows the PCI output AC timing diagram.

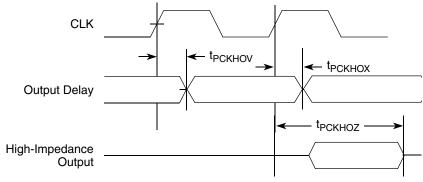


Figure 28. PCI Output AC Timing Diagram

Timers

13 Timers

This section describes the DC and AC electrical specifications for the Timers of the MPC8343E.

13.1 Timers DC Electrical Characteristics

Table 36 provides the DC electrical characteristics for the MPC8343E Timers pins, including TIN, $\overline{\text{TOUT}}$, $\overline{\text{TGATE}}$ and RTC_CLK.

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} +0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 36. Timers DC Electrical Characteristics

13.2 Timers AC Timing Specifications

Table 37 provides the Timers input and output AC timing specifications.

Table 37. Timers Input AC Timing Specifications ¹

Characteristic	Symbol ²	Min	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

2. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any external synchronous logic. Timers inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

GPIO

14 GPIO

This section describes the DC and AC electrical specifications for the GPIO of the MPC8343E.

14.1 GPIO DC Electrical Characteristics

Table 38 provides the DC electrical characteristics for the MPC8343E GPIO.

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} +0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Table 38. GPIO DC Electrical Characteristics

14.2 GPIO AC Timing Specifications

Table 39 provides the GPIO input and output AC timing specifications.

Table 39. GPIO Input AC Timing Specifications ¹

Characteristic	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

2.GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation.

15 IPIC

IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins of the MPC8343E.

15.1 IPIC DC Electrical Characteristics

Table 40 provides the DC electrical characteristics for the external interrupt pins of the MPC8343E.

 Table 40. IPIC DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} +0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Notes:

1. This table applies for pins $\overline{IRQ}[0:7], \overline{IRQ_OUT}$ and $\overline{MCP_OUT}.$

2. $\overline{\text{IRQ}_\text{OUT}}$ and $\overline{\text{MCP}_\text{OUT}}$ are open drain pins, thus V_OH is not relevant for those pins.

15.2 IPIC AC Timing Specifications

Table 41 provides the IPIC input and output AC timing specifications.

Table 41. IPIC Input AC Timing Specifications ¹

Characteristic	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PICWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

2.IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any external synchronous logic. IPIC inputs are required to be valid for at least t_{PICWID} ns to ensure proper operation when working in edge triggered mode.

16 SPI

This section describes the DC and AC electrical specifications for the SPI of the MPC8343E.

16.1 SPI DC Electrical Characteristics

Table 42 provides the DC electrical characteristics for the MPC8343E SPI.

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} +0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Table 42. SPI DC Electrical Characteristics

16.2 SPI AC Timing Specifications

Table 43 and provide the SPI input and output AC timing specifications.

Table 43.	SPI AC	Timing	Specifications ¹	
-----------	--------	--------	-----------------------------	--

Characteristic	Symbol ²	Min	Max	Unit
SPI outputs valid—Master mode (internal clock) delay	t _{NIKHOV}		6	ns
SPI outputs hold—Master mode (internal clock) delay	t _{NIKHOX}	0.5		ns
SPI outputs valid—Slave mode (external clock) delay	t _{NEKHOV}		8	ns
SPI outputs hold—Slave mode (external clock) delay	t _{NEKHOX}	2		ns
SPI inputs—Master mode (internal clock input setup time	t _{NIIVKH}	4		ns
SPI inputs—Master mode (internal clock input hold time	t _{NIIXKH}	0		ns
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4		ns
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2		ns

Notes:

1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

2. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{NIKHOX} symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).

SPI

Figure 29 provides the AC test load for the SPI.

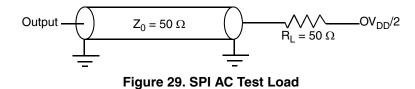
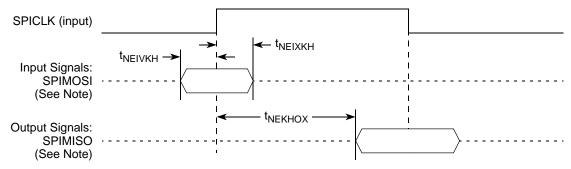
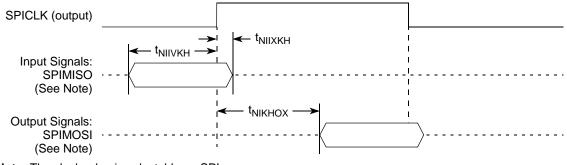



Figure 30 through Figure 31 represent the AC timing from Table 43. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.


Figure 30 shows the SPI timing in Slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 31 shows the SPI timing in Master mode (internal clock).

Note: The clock edge is selectable on SPI.

Figure 31. SPI AC Timing in Master mode (Internal Clock) Diagram

MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 5

Package and Pin Listings

17 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8343E is available in a plastic ball grid array (PBGA), see Section 17.1, "Package Parameters for the MPC8343E PBGA," and Section 17.2, "Mechanical Dimensions of the MPC8343E PBGA," on the PBGA.

17.1 Package Parameters for the MPC8343E PBGA

The package parameters are as provided in the following list. The package type is $29 \text{ mm} \times 29 \text{ mm}$, 620 Plastic ball grid array (PBGA).

Package outline	$29 \text{ mm} \times 29 \text{ mm}$
Interconnects	620
Pitch	1.00 mm
Module height (maximum)	2.46 mm
Module height (typical)	2.23 mm
Module height (minimum)	2.00 mm
Solder Balls	62 Sn/36 Pb/2 Ag (ZQ package)
	95.5 Sn/0.5 Cu/4Ag (VR package)
Ball diameter (typical)	0.60 mm

Package and Pin Listings

17.2 Mechanical Dimensions of the MPC8343E PBGA

Figure 32 the mechanical dimensions and bottom surface nomenclature of the MPC8343E, 620-PBGA package.

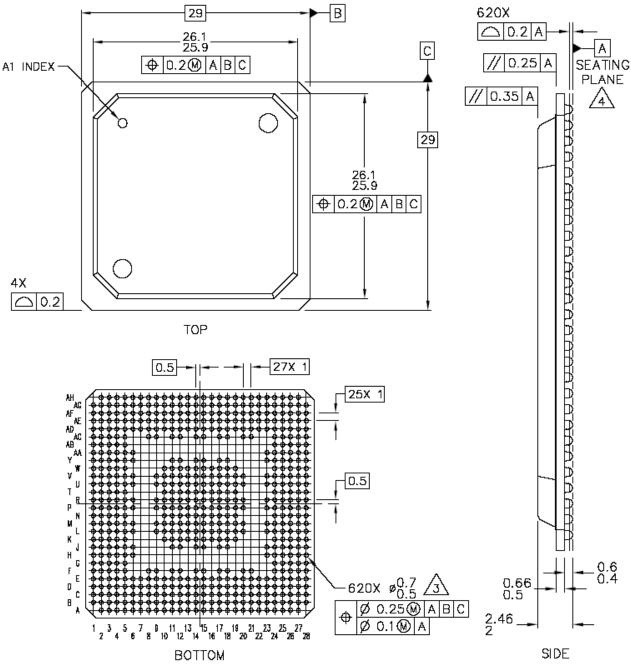


Figure 32. Mechanical Dimensions and Bottom Surface Nomenclature of the MPC8343E PBGA

NOTE

- 1. All dimensions in millimeters
- 2. Dimensioning and tolerancing per ASME Y14. 5M-1994

3. Maximum solder ball diameter measured parallel to datum A

Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

17.3 Pinout Listings

Table 44 provides the pin-out listing for the MPC8343E, 620 PBGA package.

Table 44. MPC8343E (PBGA) Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	PCI	L	1	1
PCI1_INTA/IRQ_OUT	D20	0	OV _{DD}	2
PCI1_RESET_OUT	B21	0	OV _{DD}	
PCI1_AD[31:0]	E19, D17, A16, A18, B17, B16, D16, B18, E17, E16, A15, C16, D15, D14, C14, A12, D12, B11, C11, E12, A10, C10, A9, E11, E10, B9, B8, D9, A8, C9, D8, C8	I/O	OV _{DD}	
PCI1_C/BE[3:0]	A17, A14, A11, B10	I/O	OV _{DD}	
PCI1_PAR	D13	I/O	OV _{DD}	
PCI1_FRAME	B14	I/O	OV _{DD}	5
PCI1_TRDY	A13	I/O	OV _{DD}	5
PCI1_IRDY	E13	I/O	OV _{DD}	5
PCI1_STOP	C13	I/O	OV _{DD}	5
PCI1_DEVSEL	B13	I/O	OV _{DD}	5
PCI1_IDSEL	C17	I	OV _{DD}	
PCI1_SERR	C12	I/O	OV _{DD}	5
PCI1_PERR	B12	I/O	OV _{DD}	5
PCI1_REQ[0]	A21	I/O	OV _{DD}	
PCI1_REQ[1]/CPCI1_HS_ES	C19	I	OV _{DD}	
PCI1_REQ[2:4]	C18, A19, E20	I	OV _{DD}	
PCI1_GNT0	B20	I/O	OV _{DD}	
PCI1_GNT1/CPCI1_HS_LED	C20	0	OV _{DD}	
PCI1_GNT2/CPCI1_HS_ENUM	B19	0	OV _{DD}	
PCI1_GNT[3:4]	A20, E18	0	OV _{DD}	
M66EN	L26	I	OV _{DD}	
	DDR SDRAM Memory Interface		1	
MDQ[0:31]	AC25, AD27, AD25, AH27, AE28, AD26, AD24, AF27, AF25, AF28, AH24, AG26, AE25, AG25, AH26, AH25, AG22, AH22, AE21, AD19, AE22, AF23, AE19, AG20, AG19, AD17, AE16, AF16, AF18, AG18, AH17, AH16	I/O	GV _{DD}	

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MECC[0:4]/MSRCID[0:4]	AG13, AE14, AH12, AH10, AE15	I/O	GV _{DD}	
MECC[5]/MDVAL	AH14	I/O	GV _{DD}	
MECC[6:7]	AE13, AH11	I/O	GV _{DD}	
MDM[0:3]	AG28, AG24, AF20, AG17	0	GV _{DD}	
MDM[8]	AG12	0	GV _{DD}	
MDQS[0:3]	AE27, AE26, AE20, AH18	I/O	GV _{DD}	
MDQS[8]	AH13	I/O	GV _{DD}	
MBA[0:1]	AF10, AF11	0	GV _{DD}	
MA[0:14]	AF13, AF15, AG16, AD16, AF17, AH20, AH19, AH21, AD18, AG21, AD13, AF21, AF22, AE1, AA5	0	GV _{DD}	
MWE	AD10	0	GV _{DD}	
MRAS	AF7	0	GV _{DD}	
MCAS	AG6	0	GV _{DD}	
MCS[0:3]	AE7, AH7, AH4, AF2	0	GV _{DD}	
MCKE[0:1]	AG23, AH23	0	GV _{DD}	3
MCK[0:3]	AH15, AE24, AE2, AF14	0	GV _{DD}	
MCK[0:3]	AG15, AD23, AE3, AG14	0	GV _{DD}	
	Local Bus Controller Interface		-	
LAD[0:31]	T4, T5, T1, R2, R3, T2, R1, R4, P1, P2, P3, P4, N1, N4, N2, N3, M1, M2, M3, N5, M4, L1, L2, L3, K1, M5, K2, K3, J1, J2, L5, J3	I/O	OV _{DD}	
LDP[0]/CKSTOP_OUT	H1	I/O	OV _{DD}	
LDP[1]/CKSTOP_IN	К5	I/O	OV _{DD}	
LDP[2]	H2	I/O	OV _{DD}	
LDP[3]	G1	I/O	OV _{DD}	
LA[27:31]	J4, H3, G2, F1, G3	0	OV _{DD}	
LCS[0:3]	J5, H4, F2, E1	0	OV _{DD}	
LWE[0:3]/LSDDQM[0:3]/ LBS[0:3]	F3, G4, D1, E2	0	OV _{DD}	
LBCTL	H5	0	OV _{DD}	
LALE	E3	0	OV _{DD}	
LGPL0/LSDA10/ cfg_reset_source0	F4	I/O	OV _{DD}	

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LGPL1/ LSDWE / cfg_reset_source1	D2	I/O	OV _{DD}	
LGPL2/ LSDRAS/LOE	C1	0	OV _{DD}	
LGPL3/ <u>LSDCAS/</u> cfg_reset_source2	C2	I/O	OV _{DD}	
LGPL4/LGTA/LUPWAIT/LPBSE	C3	I/O	OV _{DD}	
LGPL5/cfg_clkin_div	В3	I/O	OV _{DD}	
LCKE	E4	0	OV _{DD}	
LCLK[0:2]	D4, A3, C4	0	OV _{DD}	
LSYNC_OUT	U3	0	OV _{DD}	
LSYNC_IN	Y2	I	OV _{DD}	
	General Purpose I/O Timers			1
GPIO1[0]/ GTM1_TIN1/ GTM2_TIN2	D27	I/O	OV _{DD}	
GPIO1[1]/ GTM1_TGATE1/ GTM2_TGATE2	E26	I/O	OV _{DD}	
GPIO1[2]/ GTM1_TOUT1	D28	I/O	OV _{DD}	
GPIO1[3]/ GTM1_TIN2/ GTM2_TIN1	G25	I/O	OV _{DD}	
GPIO1[4]/ GTM1_TGATE2/ GTM2_TGATE1	J24	I/O	OV _{DD}	
GPIO1[5]/ GTM1_TOUT2/ GTM2_TOUT1	F26	I/O	OV _{DD}	
GPIO1[6]/ GTM1_TIN3/ GTM2_TIN4	E27	I/O	OV _{DD}	
GPIO1[7]/ GTM1_TGATE3/ GTM2_TGATE4	E28	I/O	OV _{DD}	
GPIO1[8]/ GTM1_TOUT3	H25	I/O	OV _{DD}	

Signal	Package Pin Number	Pin Type	Power Supply	Notes
GPIO1[9]/ GTM1_TIN4/ GTM2_TIN3	F27	I/O	OV _{DD}	
GPIO1[10]/ GTM1_TGATE4/ GTM2_TGATE3	K24	I/O	OV _{DD}	
GPIO1[11]/ GTM1_TOUT4/ GTM2_TOUT3	G26	I/O	OV _{DD}	
	USB		1	I
DR_D0_ENABLEN	C28	I/O	OV _{DD}	
DR_D1_SER_TXD	F25	I/O	OV _{DD}	
DR_D2_VMO_SE0	B28	I/O	OV _{DD}	
DR_D3_SPEED	C27	I/O	OV _{DD}	
DR_D4_DP	D26	I/O	OV _{DD}	
DR_D5_DM	E25	I/O	OV _{DD}	
DR_D6_SER_RCV	C26	I/O	OV _{DD}	
DR_D7_DRVVBUS	D25	I/O	OV _{DD}	
DR_SESS_VLD_NXT	B26	I	OV _{DD}	
DR_XCVR_SEL_DPPULLUP	E24	I/O	OV _{DD}	
DR_STP_SUSPEND	A27	0	OV _{DD}	
DR_RX_ERROR_PWRFAULT	C25	I	OV _{DD}	
DR_TX_VALID_PCTL0	A26	0	OV _{DD}	
DR_TX_VALIDH_PCTL1	B25	0	OV _{DD}	
DR_CLK	A25	I	OV _{DD}	
	Programmable Interrupt Controller		•	
MCP_OUT	E8	0	OV _{DD}	2
IRQ0/MCP_IN/GPIO2[12]	J28	I/O	OV _{DD}	
IRQ[1:5]/GPIO2[13:17]	K25, J25, H26, L24, G27	I/O	OV _{DD}	
IRQ[6]/GPIO2[18]/ CKSTOP_OUT	G28	I/O	OV _{DD}	
IRQ[7]/GPIO2[19]/ CKSTOP_IN	J26	I/O	OV _{DD}	

Table 44. MPC8343E (PBGA) Pinout Listing (continued)
--------------------------	------------------------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	Ethernet Management Interfac	e		I
EC_MDC	Y24	0	LV _{DD1}	
EC_MDIO	Y25	I/O	LV _{DD1}	2
	Gigabit Reference Clock			L
EC_GTX_CLK125	Y26	I	LV _{DD1}	
Tr	ree-Speed Ethernet Controller (Gigabit	Ethernet 1)		L
TSEC1_COL/GPIO2[20]	M26	I/O	OV _{DD}	
TSEC1_CRS/GPIO2[21]	U25	I/O	LV _{DD1}	
TSEC1_GTX_CLK	V24	0	LV _{DD1}	3
TSEC1_RX_CLK	U26	I	LV _{DD1}	
TSEC1_RX_DV	U24	I	LV _{DD1}	
TSEC1_RX_ER/GPIO2[26]	L28	I/O	OV _{DD}	
TSEC1_RXD[3:0]	W26, W24, Y28, Y27	I	LV _{DD1}	
TSEC1_TX_CLK	N25	I	OV _{DD}	
TSEC1_TXD[3:0]	V28, V27, V26, W28	0	LV _{DD1}	
TSEC1_TX_EN	W27	0	LV _{DD1}	
TSEC1_TX_ER/GPIO2[31]	N24	I/O	OV _{DD}	
Tr	ree-Speed Ethernet Controller (Gigabit	Ethernet 2)		
TSEC2_COL/GPIO1[21]	P28	I/O	OV _{DD}	
TSEC2_CRS/GPIO1[22]	AC28	I/O	LV _{DD2}	
TSEC2_GTX_CLK	AC27	0	LV _{DD2}	
TSEC2_RX_CLK	AB25	I	LV _{DD2}	
TSEC2_RX_DV/GPIO1[23]	AC26	I/O	LV _{DD2}	
TSEC2_RXD[3:0]/GPIO1[13:16]	AA25, AA26, AA27, AA28	I/O	LV _{DD2}	
TSEC2_RX_ER/GPIO1[25]	R25	I/O	OV _{DD}	
TSEC2_TXD[3:0]/GPIO1[17:20]	AB26, AB27, AA24, AB28	I/O	LV _{DD2}	
TSEC2_TX_ER/GPIO1[24]	R27	I/O	OV _{DD}	
TSEC2_TX_EN/GPIO1[12]	AD28	I/O	LV _{DD2}	3
TSEC2_TX_CLK/GPIO1[30]	R26	I/O	OV _{DD}	

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	DUART			1
UART_SOUT[1:2]/ MSRCID[0:1]/LSRCID[0:1]	B4, A4	0	OV _{DD}	
UART_SIN[1:2]/ MSRCID[2:3]/LSRCID[2:3]	D5, C5	I/O	OV _{DD}	
UART_CTS[1]/ MSRCID4/LSRCID4	B5	I/O	OV _{DD}	
UART_CTS[2]/ MDVAL/ LDVAL	A5	I/O	OV _{DD}	
UART_RTS[1:2]	D6, C6	0	OV _{DD}	
	I ² C interface		-	
IIC1_SDA	E5	I/O	OV _{DD}	2
IIC1_SCL	A6	I/O	OV _{DD}	2
IIC2_SDA	B6	I/O	OV _{DD}	2
IIC2_SCL	E7	I/O	OV _{DD}	2
	SPI		-	•
SPIMOSI	D7	I/O	OV _{DD}	
SPIMISO	C7	I/O	OV _{DD}	
SPICLK	B7	I/O	OV _{DD}	
SPISEL	A7	I	OV _{DD}	
	Clocks			
PCI_CLK_OUT[0:4]	Y1, W3, W2, W1, V3	0	OV _{DD}	
PCI_SYNC_IN/PCI_CLOCK	U4	I	OV _{DD}	
PCI_SYNC_OUT	U5	0	OV _{DD}	3
RTC/PIT_CLOCK	E9	I	OV _{DD}	
CLKIN	W5	I	OV _{DD}	
	JTAG			
ТСК	H27	I	OV _{DD}	
TDI	H28	I	OV _{DD}	4
TDO	M24	0	OV _{DD}	3
TMS	J27	I	OV _{DD}	4
TRST	K26	I	OV _{DD}	4

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	Test	1		1
TEST	F28	I	OV_{DD}	6
TEST_SEL	Т3	I	OV_{DD}	7
	PMC			•
QUIESCE	K27	0	OV _{DD}	
	System Control			ı
PORESET	K28	I	OV _{DD}	
HRESET	IESET M25		OV _{DD}	1
SRESET	L27	I/O	OV _{DD}	2
	Thermal Management			
THERM0	B15	I	—	9
	Power and Ground Signals	·		
AV _{DD} 1	C15	Power for e300 PLL (1.2 V)	AV _{DD} 1	
AV _{DD} 2	U1	Power for system PLL (1.2 V)	AV _{DD} 2	
AV _{DD} 3	AF9	Power for DDR DLL (1.2 V)	AV _{DD} 3	
AV _{DD} 4	U2	Power for LBIU DLL (1.2 V)	AV _{DD} 4	
GND	A2, B1, B2, D10, D18, E6, E14, E22, F9, F12, F15, F18, F21, F24, G5, H6, J23, L4, L6, L12, L13, L14, L15, L16, L17, M11, M12, M13, M14, M15, M16, M17, M18, M23, N11, N12, N13, N14, N15, N16, N17, N18, P6, P11, P12, P13, P14, P15, P16, P17, P18, P24, R5, R23, R11, R12, R13, R14, R15, R16, R17, R18, T11, T12, T13, T14, T15, T16, T17, T18, U6, U11, U12, U13, U14, U15, U16, U17, U18, V12, V13, V14, V15, V16, V17, V23, V25, W4, Y6, AA23, AB24, AC5, AC8, AC11, AC14, AC17, AC20, AD9, AD15, AD21, AE12, AE18, AF3, AF26		_	
GV _{DD}	U9, V9, W10, W19, Y11, Y12, Y14, Y15, Y17, Y18, AA6, AB5, AC9, AC12, AC15, AC18, AC21, AC24, AD6, AD8, AD14, AD20, AE5, AE11, AE17, AG2, AG27	Power for DDR DRAM I/O Voltage (2.5 V)	GV _{DD}	

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LV _{DD1}	U20, W25	Power for Three Speed Ethernet #1 and for Ethernet Management Interface I/O (2.5V, 3.3V)	LV _{DD1}	
LV _{DD2}	V20, Y23	Power for Three Speed Ethernet #2 I/O (2.5V, 3.3V)	LV _{DD2}	
V _{DD}	J11, J12, J15, K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, L10, L11, L18, L19, M10, M19, N10, N19, P9, P10, P19, R10, R19, R20, T10, T19, U10, U19, V10, V11, V18, V19, W11, W12, W13, W14, W15, W16, W17, W18	Power for Core (1.2 V)	V _{DD}	
OV _{DD}	B27, D3, D11, D19, E15, E23, F5, F8, F11, F14, F17, F20, G24, H23, H24, J6, J14, J17, J18, K4, L9, L20, L23, L25, M6, M9, M20, P5, P20, P23, R6, R9, R24, U23, V4, V6	PCI, 10/100 Ethernet, and other Standard (3.3 V)	OV _{DD}	
MVREF1	AF19	I	DDR Reference Voltage	
MVREF2	AE10	I	DDR Reference Voltage	
	No Connection			
NC	A22, A23, A24, B22, B23, B24, C21, C22, C23, C24, D21, D22, D23, D24, E21, M27, M28, N26, N27, N28, P25, P26, P27, R28, T24, T25, T26, T27, T28, U27, U28, Y3, Y4, Y5, AA1, AA2, AA3, AA4, AB1, AB2, AB3, AB4, AC1, AC2, AC3, AC4, AD1, AD2, AD3, AD5, AD7, AD11, AD12, AE4, AE6, AE8, AE9, AE23, AF1, AF5, AF6, AF8, AF24, AG1, AG3, AG4, AG7, AG8, AG9, AG10, AH2, AH3, AH5, AH8, AH9, V5, V2, V1			
	Pins Reserved for future DDR2 (they should be left unconnected for MPC	8343)		
ODT[0:3]	AG5, AD4, AH6, AF4	_		
MBA[2]	AD22			

Signal	Package Pin Number	Pin Type	Power Supply	Notes
SPARE1	AF12	—	_	8
SPARE2	AG11	—	_	6

Notes:

1. This pin is an open drain signal. A weak pull-up resistor (1 k Ω) should be placed on this pin to OV_{DD}

2. This pin is an open drain signal. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to OV_{DD}.

3. This output is actively driven during reset rather than being three-stated during reset.

4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.

5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.

6. This pin must be always be tied to GND

7. This pin must always be pulled up to OV_{DD}

8. This pin must always be left no connected

9. Thermal sensitive resistor.

18 Clocking

Figure 33 shows the internal distribution of clocks within the MPC8343E.

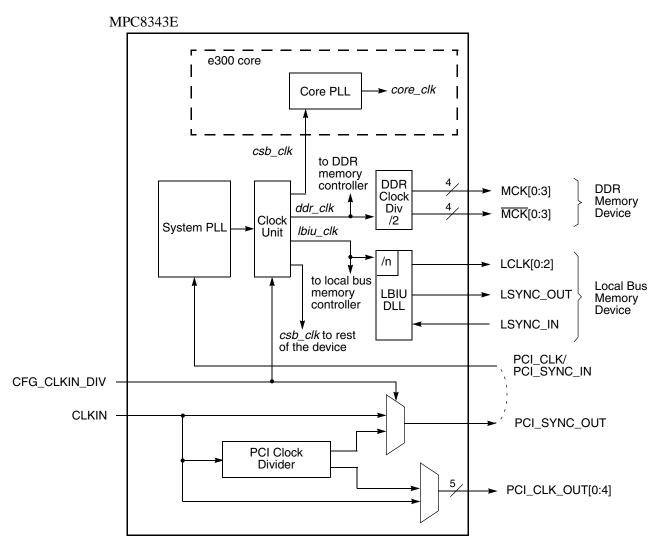


Figure 33. MPC8343E Clock Subsystem

The primary clock source for the MPC8343E can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. When the MPC8343E is configured as a PCI host device, CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICD*n*] parameters select whether CLKIN or CLKIN/2 is driven out on the PCI_CLK_OUT*n* signals.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system, to allow the MPC8343E to function. When the MPC8343E is configured as a PCI agent device, PCI_CLK is the primary input clock. When the MPC8343E is configured as a PCI agent device the CLKIN signal should be tied to GND.

Clocking

As shown in Figure 33, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the internal clock for the local bus interface unit ($lbiu_clk$).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

 $csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, "Reset, Clocking, and Initialization," in the *MPC8349E Reference Manual* for more information on the clock subsystem.

The internal *ddr_clk* frequency is determined by the following equation:

 $ddr_clk = csb_clk \times (1 + RCWL[DDRCM])$

Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as ddr_clk .

The internal *lbiu_clk* frequency is determined by the following equation:

 $lbiu_clk = csb_clk \times (1 + RCWL[LBIUCM])$

Note that *lbiu_clk* is not the external local bus frequency; *lbiu_clk* passes through the a LBIU clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBIU clock divider ratio is controlled by LCCR[CLKDIV].

In addition, some of the internal units may be required to be shut off or operate at lower frequency than the *csb_clk* frequency. Those units have a default clock ratio that can be configured by a memory mapped register after the device comes out of reset. Table 45 specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options
TSEC2, I ² C1	csb_clk/3	Off, <i>csb_clk</i> , <i>csb_clk</i> /2, <i>csb_clk</i> /3
Security Core	csb_clk/3	Off, csb_clk , $csb_clk/2$, $csb_clk/3$
PCI and DMA complex	csb_clk	Off, <i>csb_clk</i>

Table 45. Configurable Clock Units

Table 46 provides the operating frequencies for the MPC8343EPBGA under recommended operating conditions (see).

Characteristic ¹	266 MHz	333 MHz	400 MHz	Unit
e300 core frequency (<i>core_clk</i>)	TBD-266	TBD-333	TBD-400	MHz
Coherent system bus frequency (<i>csb_clk</i>)		100–333		MHz
DDR memory bus frequency (MCLK) ²	100-166.67			MHz
Local bus frequency (LCLK <i>n</i>) ³	16.67-133		MHz	
PCI input frequency (CLKIN or PCI_CLK)		25-66		MHz

Characteristic ¹	266 MHz	333 MHz	400 MHz	Unit
Security core maximum internal operating frequency		133		MHz
USB_DR, USB_MPH maximum internal operating frequency		133		MHz

¹ The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the resulting *ccb_clk*, MCLK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[ENCCM], SCCR[USBDRCM]and SCCR[USBMPHCM] must be programmed such that the maximum internal operating frequency of the Security core and USB modules will not exceed their respective value listed in this table.

² The DDR data rate is 2x the DDR memory bus frequency.

³ The local bus frequency is 1/2, 1/4, or 1/8 of the *lbiu_clk* frequency (depending on LCCR[CLKDIV]) which is in turn 1x or 2x the *ccb_clk* frequency (depending on RCWL[LBIUCM]).

18.1 System PLL Configuration

The system PLL is controlled by the RCWL[SPMF] parameter. Table 47 shows the multiplication factor encodings for the system PLL.

RCWL[SPMF]	System PLL Multiplication Factor
0000	× 16
0001	Reserved
0010	× 2
0011	× 3
0100	× 4
0101	× 5
0110	× 6
0111	× 7
1000	× 8
1001	× 9
1010	× 10
1011	× 11
1100	× 12
1101	× 13
1110	× 14
1111	× 15

 Table 47. System PLL Multiplication Factors

As described in Section 18, "Clocking," The LBIUCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). Table 48 and Table 49 shows the expected frequency values for the CSB frequency for select *csb_clk* to CLKIN/PCI_SYNC_IN ratios.

CFG_CLKIN_DIV at reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	Input Clock Frequency (MHz) ²			
			16.67	25	33.33	66.67
			csb_clk Frequency (MHz)			
Low	0010	2 : 1				133
Low	0011	3 : 1			100	200
Low	0100	4 : 1		100	133	266
Low	0101	5 : 1		125	166	333
Low	0110	6 : 1	100	150	200	
Low	0111	7:1	116	175	233	
Low	1000	8 : 1	133	200	266	
Low	1001	9 : 1	150	225	300	
Low	1010	10 : 1	166	250	333	
Low	1011	11 : 1	183	275		
Low	1100	12 : 1	200	300	-	
Low	1101	13 : 1	216	325	-	
Low	1110	14 : 1	233		-	
Low	1111	15 : 1	250			
Low	0000	16 : 1	266			
High	0010	2 : 1				133
High	0011	3 : 1			100	200
High	0100	4 : 1			133	266
High	0101	5 : 1			166	333
High	0110	6 : 1			200	
High	0111	7:1			233	
High	1000	8 : 1				

Table 48. CSB Frequency Options for host mode

¹ CFG_CLKIN_DIV select the ratio between CLKIN and PCI_SYNC_OUT.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	Input Clock Frequency (MHz) ²			
CFG_CLKIN_DIV at reset ¹			16.67	25	33.33	66.67
			csb_clk Frequency (MHz)			
Low	0010	2:1				133
Low	0011	3:1			100	200
Low	0100	4 : 1		100	133	266
Low	0101	5 : 1		125	166	333
Low	0110	6:1	100	150	200	
Low	0111	7:1	116	175	233	
Low	1000	8:1	133	200	266	
Low	1001	9:1	150	225	300	
Low	1010	10 : 1	166	250	333	
Low	1011	11:1	183	275		1
Low	1100	12 : 1	200	300		
Low	1101	13 : 1	216	325		
Low	1110	14 : 1	233		1	
Low	1111	15 : 1	250			
Low	0000	16 : 1	266			
high	0010	4 : 1		100	133	266
High	0011	6 : 1	100	150	200	
High	0100	8:1	133	200	266	
High	0101	10 : 1	166	250	333	
High	0110	12 : 1	200	300		
High	0111	14 : 1	233			
High	1000	16 : 1	266			

Table 49. CSB Frequency Options for Agent Mode

¹ CFG_CLKIN_DIV doubles csb_clk if set high.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

18.2 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). Table 50 shows the encodings for RCWL[COREPLL]. COREPLL values that are not listed in Table 50 should be considered as reserved.

NOTE

Core VCO frequency = Core frequency \times VCO divider VCO divider has to be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

RCWL[COREPLL]		PLL]		VCO divider ¹
0-1	2-5	6	<i>core_clk</i> : <i>csb_clk</i> Ratio	VCO divider
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)
00	0001	0	1:1	2
01	0001	0	1:1	4
10	0001	0	1:1	8
11	0001	0	1:1	8
00	0001	1	1.5:1	2
01	0001	1	1.5:1	4
10	0001	1	1.5:1	8
11	0001	1	1.5:1	8
00	0010	0	2:1	2
01	0010	0	2:1	4
10	0010	0	2:1	8
11	0010	0	2:1	8
00	0010	1	2.5:1	2
01	0010	1	2.5:1	4
10	0010	1	2.5:1	8
11	0010	1	2.5:1	8
00	0011	0	3:1	2
01	0011	0	3:1	4
10	0011	0	3:1	8
11	0011	0	3:1	8

Table 50. e300 Core PLL Configuration

 1 Core VCO frequency = Core frequency \times VCO divider. Note that VCO divider has

to be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

18.3 Suggested PLL Configurations

Table 51 shows suggested PLL configurations for 33 MHz and 66 MHz input clocks, when CFG_CLKIN_DIV is low at reset.

Ref No. ¹	RCWL		RCWL 266 MHz Device		33:	333 MHz Device		400 MHz Device				
	SPMF	CORE PLL	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	
				33 N	Hz CLKIN	/PCI_CLK	Options					
703	0111	0000011		TBD			TBD		33	233	350	
723	0111	0100011		TBD			TBD		33	233	350	
604	0110	0000100		TBD			TBD		33	200	400	
624	0110	0100100		TBD			TBD		33	200	400	
704	0111	0000011		TBD			TBD			_		
724	0111	0100011		TBD			TBD			_		
705	0111	0000101		TBD			TBD			_		
606	0110	0000110		TBD			TBD			_		
				66 N	IHz CLKIN	I/PCI_CLK	Options					
502	0101	0000010		TBD			TBD		66	333	333	
522	0101	0100010		TBD			TBD		66	333	333	
304	0011	0000100		TBD			TBD		66	200	400	
324	0011	0100100		TBD			TBD		66	200	400	
403	0100	0000011		TBD			TBD		66	266	400	
423	0100	0100011		TBD			TBD		66	266	400	
503	0101	0000011		TBD			TBD			_		
523	0101	0100011		TBD			TBD		—			
305	0011	0000101		TBD			TBD		—			
404	0100	0000100		TBD			TBD		—			
306	0011	0000100		TBD			TBD			_		
405	0100	0000101		TBD			TBD			_		
504	0101	0000100		TBD			TBD					

Table 51.	Suggested	PLL Co	onfigurations
-----------	-----------	--------	---------------

¹ The PLL configuration reference number is the hexadecimal representation of RCWL, bits 4-15 associated with the SPMF and COREPLL settings given in the table.

² The input clock is CLKIN for PCI host mode or PCI_CLK for PCI agent mode.

19 Thermal

This section describes the thermal specifications of the MPC8343E.

19.1 Thermal Characteristics

.Table 52 provides the package thermal characteristics for the 620 29x29 mm PBGA of the MPC8343E

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient Natural Convection on single layer board (1s)	$R_{ ext{ heta}JA}$	21	°C/W	1, 2
Junction-to-ambient Natural Convection on four layer board (2s2p)	R_{\thetaJMA}	15	°C/W	1, 3
Junction-to-ambient (@200 ft/min) on single layer board (1s)	R_{\thetaJMA}	17	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on four layer board (2s2p)	R_{\thetaJMA}	12	°C/W	1, 3
Junction-to-board thermal	$R_{\theta JB}$	6	°C/W	4
Junction-to-case thermal	$R_{ ext{ heta}JC}$	5	°C/W	5
Junction-to-Package Natural Convection on Top	ΨJT	5	°C/W	6

Table 52. Package Thermal Characteristics for PBGA

Notes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

19.2 Thermal Management Information

For the following sections, $P_D = (V_{DD} X I_{DD}) + P_{I/O}$ where $P_{I/O}$ is the power dissipation of the I/O drivers.

Thermal

19.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

 $T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$ where: $T_{A} = \text{ambient temperature for the package (°C)}$ $R_{\theta JA} = \text{junction to ambient thermal resistance (°C/W)}$ $P_{D} = \text{power dissipation in the package (W)}$

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. As a general statement, the value obtained on a single layer board is appropriate for a tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_I - T_A$) are possible.

19.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction to ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package will be approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$ where: T_A = ambient temperature for the package (°C) $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W) P_D = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

19.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_{J} = T_{T} + (\Psi_{JT} \times P_{D})$$

where:
$$T_{T} = \text{thermocouple temperature on top of package (°C)}$$

$$\Psi_{JT} = \text{junction to ambient thermal resistance (°C/W)}$$

$$P_{D} = \text{power dissipation in the package (W)}$$

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

19.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

In some application environments, a heat sink will be required to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case thermal resistance and a case to ambient thermal resistance:

 $\begin{aligned} R_{\theta JA} &= R_{\theta JC} + R_{\theta CA} \\ \text{where:} \\ R_{\theta JA} &= \text{junction to ambient thermal resistance (°C/W)} \\ R_{\theta JC} &= \text{junction to case thermal resistance (°C/W)} \\ R_{\theta CA} &= \text{case to ambient thermal resistance (°C/W)} \end{aligned}$

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, air flow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Thermal

		29x29 mm PBGA	
Heat Sink Assuming Thermal Grease	Air Flow	Junction-to-Ambient Thermal Resistance	
AAVID 30x30x9.4 mm Pin Fin	Natural Convention	13.5	
AAVID 30x30x9.4 mm Pin Fin	1 m/s	9.6	
AAVID 30x30x9.4 mm Pin Fin	2 m/s	8.8	
AAVID 31x35x23 mm Pin Fin	Natural Convention	11.3	
AAVID 31x35x23 mm Pin Fin	1 m/s	8.1	
AAVID 31x35x23 mm Pin Fin	2 m/s	7.5	
Wakefield, 53x53x25 mm Pin Fin	Natural Convention	9.1	
Wakefield, 53x53x25 mm Pin Fin	1 m/s	7.1	
Wakefield, 53x53x25 mm Pin Fin	2 m/s	6.5	
MEI, 75x85x12 no adjacent board, extrusion	Natural Convention	10.1	
MEI, 75x85x12 no adjacent board, extrusion	1 m/s	7.7	
MEI, 75x85x12 no adjacent board, extrusion	2 m/s	6.6	
MEI, 75x85x12 mm, adjacent board, 40 mm Side bypass	1 m/s	6.9	

Table 53 showsheat sinks and junction-to-case thermal resistance for PBGA of the MPC8343E.

		29x29 mm PBGA
Heat Sink Assuming Thermal Grease	Air Flow	Junction-to-Ambient Thermal Resistance
AAVID 30x30x9.4 mm Pin Fin	Natural Convention	13.5
AAVID 30x30x9.4 mm Pin Fin	1 m/s	9.6
AAVID 30x30x9.4 mm Pin Fin	2 m/s	8.8
AAVID 31x35x23 mm Pin Fin	Natural Convention	11.3
AAVID 31x35x23 mm Pin Fin	1 m/s	8.1
AAVID 31x35x23 mm Pin Fin	2 m/s	7.5
Wakefield, 53x53x25 mm Pin Fin	Natural Convention	9.1
Wakefield, 53x53x25 mm Pin Fin	1 m/s	7.1
Wakefield, 53x53x25 mm Pin Fin	2 m/s	6.5
MEI, 75x85x12 no adjacent board, extrusion	Natural Convention	10.1
MEI, 75x85x12 no adjacent board, extrusion	1 m/s	7.7
MEI, 75x85x12 no adjacent board, extrusion	2 m/s	6.6
MEI, 75x85x12 mm, adjacent board, 40 mm Side bypass	1 m/s	6.9

Table 53. Heat Sinks and Junction-to-Case Thermal Resistance MPC8343E (PBGA)

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.

Heat sink vendors include the following list:

Aavid Thermalloy 80 Commercial St. Concord, NH 03301 Internet: www.aavidthermalloy.com	603-224-9988
Alpha Novatech 473 Sapena Ct. #12 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-567-8082
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277

	Millennium Electronics (MEI) Loroco Sites 671 East Brokaw Road San Jose, CA 95112 Internet: www.mei-thermal.com	408-436-8770
	Tyco Electronics Chip Coolers [™] P.O. Box 3668 Harrisburg, PA 17105-3668 Internet: www.chipcoolers.com	800-522-2800
	Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-5102
Interfa	ce material vendors include the following:	
	Chomerics, Inc. 77 Dragon Ct. Woburn, MA 01801 Internet: www.chomerics.com	781-935-4850
	Dow-Corning Corporation Dow-Corning Electronic Materials P.O. Box 994 Midland, MI 48686-0997 Internet: www.dowcorning.com	800-248-2481
	Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com	888-642-7674
	The Bergquist Company 18930 West 78th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com	800-347-4572

19.3 Heat Sink Attachment

When attaching heat sinks to these devices, an interface material is required. The best method is to use thermal grease and a spring clip. The spring clip should connect to the printed circuit board, either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint lifetime of the package. Recommended maximum force on the top of the package is 10 lb force (4.5 kg force). If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic surfaces and its performance verified under the application requirements.

19.3.1 Experimental Determination of the Junction Temperature with a Heat Sink

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction to case thermal resistance.

 $T_J = T_C + (R_{\theta JA} \times P_D)$ where:

> T_C = case temperature of the package (°C) $R_{\theta JC}$ = junction to case thermal resistance (°C/W) P_D = power dissipation (W)

Thermal

20 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8343E.

20.1 System Clocking

The MPC8343E includes two PLLs.

- 1. The platform PLL (AV_{DD}1) generates the platform clock from the externally supplied CLKIN input. The frequency ratio between the platform and CLKIN is selected using the platform PLL ratio configuration bits as described in Section 18.1, "System PLL Configuration."
- 2. The e300 Core PLL (AV_{DD}2) generates the core clock as a slave to the platform clock. The frequency ratio between the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in Section , "."

20.2 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins $(AV_{DD}1, AV_{DD}2$ respectively). The AV_{DD} level should always be equivalent to V_{DD} , and preferably these voltages will be derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide five independent filter circuits as illustrated in Figure 34, one to each of the five AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

Figure 34 shows the PLL power supply filter circuit.

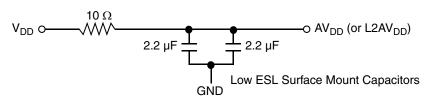


Figure 34. PLL Power Supply Filter Circuit

20.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the MPC8343E can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8343E system, and the MPC8343E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pins of the MPC8343E. These decoupling capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , OV_{DD} , OV_{DD} , GV_{DD} , OV_{DD} , OV

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

20.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , GV_{DD} , LV_{DD} , OV_{DD} , and GND pins of the MPC8343E.

20.5 Output Buffer DC Impedance

The MPC8343E drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 35). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

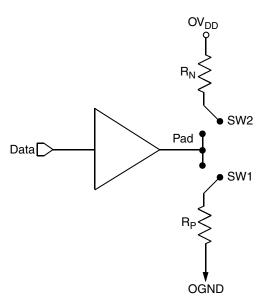


Figure 35. Driver Impedance Measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = 1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

Table 54 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI Signals (not including PCI output clocks)	PCI Output Clocks (including PCI_SYNC_OUT)	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	42 Target	20 Target	Z ₀	Ω
R _P	42 Target	25 Target	42 Target	20 Target	Z ₀	Ω
Differential	NA	NA	NA	NA	Z _{DIFF}	Ω

Table 54. Impedance Characteristics

Note: Nominal supply voltages. See Table 55, $T_i = 105^{\circ}C$.

20.6 Configuration Pin Muxing

The MPC8343E provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While $\overline{\text{HRESET}}$ is asserted however, these pins are treated as inputs. The value presented on these pins while $\overline{\text{HRESET}}$ is asserted, is latched when $\overline{\text{HRESET}}$ deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these

pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

20.7 Pull-Up Resistor Requirements

The MPC8343E requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including I²C pins, Ethernet Management MDIO pin and EPIC interrupt pins.

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 36. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

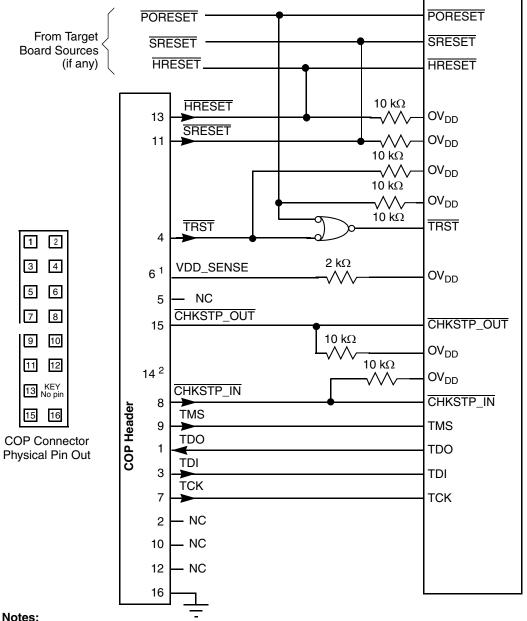
Refer to the PCI 2.2 specification for all pull-ups required for PCI.

20.8 JTAG Configuration Signals

Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but is provided on all processors that implement the PowerPC architecture. The MPC8343E requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, generally systems will assert TRST during power-on reset. Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to PORESET is not practical.

The COP function of these processors allows a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert TRST without causing PORESET. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 36 allows the COP to independently assert $\overline{\text{HRESET}}$ or $\overline{\text{TRST}}$, while ensuring that the target can drive $\overline{\text{HRESET}}$ as well. If the JTAG interface and COP header will not be used, $\overline{\text{TRST}}$ should be tied to $\overline{\text{PORESET}}$ so that it is asserted when the system reset signal ($\overline{\text{PORESET}}$) is asserted.


The COP header shown Figure 36 in adds many benefits—breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features are possible through this interface—and can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header).

There is no standardized way to number the COP header shown in Figure 36; consequently, many different pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter

System Design Information

clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 36 is common to all known emulators.

- Notes:
- 1. Some systems require power to be fed from the application board into the debugger repeater card via the COP header. In this case the resistor value for VDD_SENSE should be around 20 Ω.
- 2. Key location; pin 14 is not physically present on the COP header.

Figure 36. JTAG Interface Connection

21 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal charaistics for the MPC8343E. The MPC8343E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

21.1 Overall DC Electrical Characteristics

This section covers the ratings, conditions, and other characteristics.

21.1.1 Absolute Maximum Ratings

Table 55 provides the absolute maximum ratings.

Cha	racteristic	Symbol	Max Value	Unit	Notes
Core supply voltage		V _{DD}	-0.3 to 1.32	V	
PLL supply voltage		AV _{DD}	-0.3 to 1.32	V	
DDR DRAM I/O voltage		GV _{DD}	-0.3 to 3.63	V	
Three-speed Ethernet I/O, MII management voltage		LV _{DD}	-0.3 to 3.63	V	
PCI, local bus, DUART, system control and power management, I ² C, and JTAG I/O voltage		OV _{DD}	-0.3 to 3.63	V	
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5
	Local bus, DUART, CLKIN, system control and power management, I ² C, and JTAG signals	OV _{IN}	–0.3 to (OV _{DD} + 0.3)	V	3, 5
	PCI	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6

Table 55. Absolute Maximum Ratings ¹

	ann nathrigo	(continued)		
Characteristic	Symbol	Max Value	Unit	Notes
Storage temperature range	T _{STG}	–55 to 150	°C	

Table 55. Absolute Maximum Ratings ¹ (continued)

Notes:

- 1. Functional and tested operating conditions are given in Table 56. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. **Caution:** MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. **Caution:** OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. Caution: LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 5. (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 37.
- 6. OV_{IN} on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

21.1.2 Power Supply Voltage Specification

Table 56 provides the recommended operating conditions for the MPC8343E. Note that the values in Table 56 are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Characteristic	Symbol	Recommended Value	Unit	Notes
Core supply voltage	V _{DD}	1.2 V ± 60 mV	V	1
PLL supply voltage	AV _{DD}	1.2 V ± 60 mV	V	1
DDR DRAM I/O supply voltage	GV _{DD}	2.5 V ± 125 mV	V	
Three-speed Ethernet I/O supply voltage	LV _{DD1}	3.3 V ± 330 mV 2.5 V ± 125 mV	V	
Three-speed Ethernet I/O supply voltage	LV _{DD2}	3.3 V ± 330 mV 2.5 V ± 125 mV	V	
PCI, local bus, DUART, system control and power management, I ² C, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	

Table 56. Recommended Operating Conditions

Notes:

1. GVDD, LVDD, OVDD, AVDD, and VDD must track each other and must vary in the same direction—either in the positive or negative direction.

Figure 37 shows the undershoot and overshoot voltages at the interfaces of the MPC8343E.

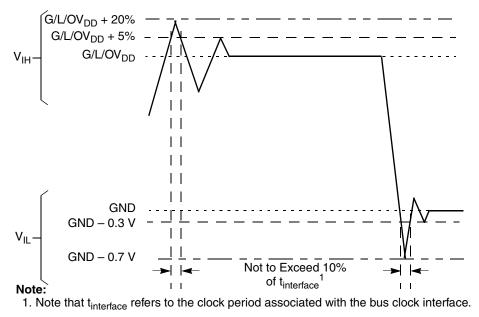


Figure 37. Overshoot/Undershoot Voltage for GV_{DD}/OV_{DD}/LV_{DD}

Figure 38 shows the undershoot and overshoot voltage of the PCI interface of the MPC8343E for the 3.3-V signals, respectively.

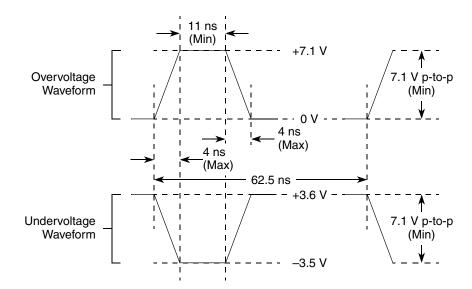


Figure 38. Maximum AC Waveforms on PCI interface for 3.3-V Signaling

21.1.3 Output Driver Characteristics

Table 57 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	42	OV _{DD} = 3.3 V
PCI signals (not including PCI output clocks)	25	
PCI output clocks (including PCI_SYNC_OUT)	42	
DDR signal	20	GV _{DD} = 2.5 V
TSEC/10/100 signals	42	LV _{DD} = 2.5/3.3 V
DUART, system control, I2C, JTAG	42	OV _{DD} = 3.3 V
GPIO signals	42	OV _{DD} = 3.3 V, LV _{DD} = 2.5/3.3 V

Table 57. Output Drive Capability

21.2 Power Sequencing

MPC8343E does not require the core supply voltage and IO supply voltages to be applied in any particular order. Note that during the power ramp up, before the power supplies are stable, there might be a period of time that IO pins are actively driven. After the power is stable, as long as **PORESET** is asserted, most IO pins are tri-stated. In order to minimize the time that IO pins being actively driven, it is recommended to apply core voltage before IO voltage and assert **PORESET** before the power supplies fully ramp up.

22 Document Revision History

Table 58 provides a revision history of this document.

Revision	Date	Substantive Change(s)
5	10/2005	Changed classification of document to "Technical Data."
4	9/2005	Added Table 2, "MPC8343E Typical I/O Power Dissipation."
3	8/2005	Table 1: Updated values for power dissipation that were TBD in Revision 2.Table 44: Deleted package pin number AD22 from NC signal row.
2	5/2005	Table 1: Typical values for power dissipation are changed to "TBD".
1	4/2005	Table 1: Addition of note 1 Table 44: Addition of Therm0 (B15)
0	4/2005	—

Table 58. Document Revision History

23 Ordering Information

Ordering information for the parts fully covered by this specification document is provided in Section 23.1, "Part Numbers Fully Addressed by this Document."

23.1 Part Numbers Fully Addressed by this Document

Table 59 provides the Freescale part numbering nomenclature for the MPC8343E. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision code which refers to the die mask revision number.

MPC	nnnn	е	t	рр	aa	а	r
Product Code	Part Identifier	Encryption Acceleration	Temperature ¹ Range	Package ²	Processor Frequency ³	Platform Frequency	Revision Level
MPC	8343	Blank = Not included E = included	Blank = 0 to 105°C C= -40 to 105°C	ZQ = PBGA VR = PB Free PBGA	e300 core speed AD =266 AG = 400	D = 266	Contact local Freescale sales office

Table 59. Part Numbering Nomenclature

Notes:

1. For temperature range = C, processor frequency is limited to "TBD" with a platform frequency of "TBD".

2. See Section 1.13, "Package and Pin Listings" for more information on available package types.

 Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.

How to Reach Us:

Home Page: www.freescale.com

email: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

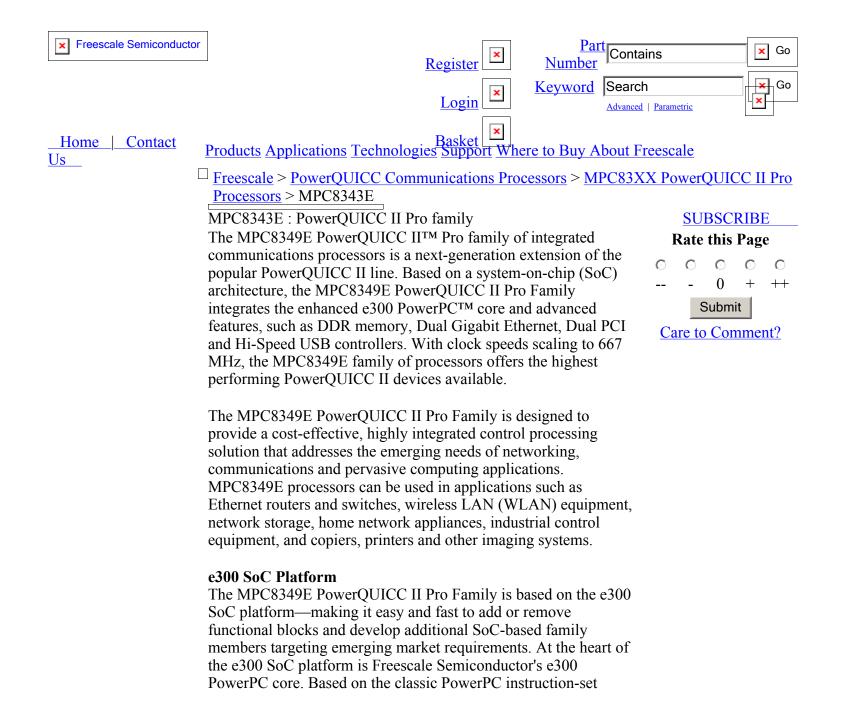
Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com


Document Number: MPC8343EEC Rev. 5 10/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2005.

architecture, the e300 core is an enhanced version of the 603e PowerPC core used in previous-generation PowerQUICC II processors. Enhancements include twice as much L1 cache (32 KB data cache and 32 KB instruction cache) with integrated parity checking, and other performance-enhancing features. The e300 core is completely software-compatible with existing 603e corebased products.

Integrated Security

The MPC8349E Family features a powerful integrated security engine derived from Freescale Semiconductor's security coprocessor product line. The MPC8349E Family's security engine supports DES, 3DES, MD-5, SHA-1, AES, and ARC-4 encryption algorithms, as well as a public key accelerator and an on-chip random number generator. The security engine is capable of single-pass encryption and authentication, as required by IPsec, IEEE® 802.11i standard and other security protocols.

Link Product Picture

MPC8343E Features

e300 PowerPC core operating from 400 MHz up to 667 MHz (enhanced version of 603e core with larger caches)

- 32-bit, high-performance superscalar core
- 1260 MIPS @ 667 MHz
- Double-precision floating point, integer, load/store, system register, and branch processor units
- 32 KB data and 32 KB instruction cache with line locking support
- DDR memory controller, up to 333 MHz data rate, with 32or 64-bit interfaces with ECC
- Dual PCI interfaces
- Dual 10/100/1000 Ethernet controllers

- Embedded security engine
- Dual Hi-Speed USB controllers
- Local bus controller
- Dual UART (DUART)
- Dual I²C interfaces (master or slave mode)
- Four-channel DMA controller
- Serial peripheral interface (SPI)
- General-purpose parallel I/O (GPIO)
- IEEE 1149.1 JTAG test access port
- Package: 672-pin, 35 mm x 35 mm TBGA (1 mm pitch)
- Process technology: 130 nm CMOS
- Voltage: 1.2V core voltage with 3.3V and 2.5V I/O

□ <u>Return to Top</u>

MPC8343E Parametrics

Package Description PBGA 620 29*29*1.2P1.0

View expanded set of parameters

Parametric Search

□ <u>Return to Top</u>

MPC8343E Documentation **Documentation**

Application Notes ID and Description

AN2582 Hardware and Layout Design Considerations for DDR Memory Interfaces	FREESCALE	pdf	
AN2755 AN2755: SEC 2.0 Descriptor Programmer's Guide	FREESCALE	pdf	
AN2810.PDF PowerQUICC UPM Configuration	FREESCALE	pdf	
AN2810SW.ZIP	FREESCALE	zip	
AN2810 Supporting Files AN2583	FREESCALE	pdf	
Programming the PowerQUICC III DDR SDRAM Controller AN2745	FREESCALE	pdf	
Setting Up TSEC Hash Tables AN2491	FREESCALE	pdf	
Simplified Mnemonics for PowerPC Instructions <u>AN2540</u>		1	
Synchronizing Instructions for PowerPC(TM) Instruction Set Architecture AN2129	FREESCALE	pdf	
Instruction and Data Cache Locking on the G2 Processor Core	FREESCALE	pdf	
Data Sheets ID and Description	Vendor ID	Format	S
MPC8343EEC MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware	FREESCALE	pdf	1
Specifications	TREESCALE	pui]
Errata - <u>Click here for important errata information</u>	Vendor ID	F 4	c
ID and Description MPC8349ECE	vendor ID	Format	2
MPC8349ECE MPC8349E PowerQUICC II Pro Family Device Errata	FREESCALE	pdf	
Fact Sheets	Vander ID	Farmet	c
ID and Description	Vendor ID	Format	S
MPC8349FS MPC8349E PowerQUICC II Pro Family Fact Sheet	FREESCALE	pdf	

Packaging Information			
ID and Description	Vendor ID	Format	5
PBGAPRES	EDEEQCALE		1
PBGA Packaging Customer Tutorial	FREESCALE	pdf]
TBGAPRESPKG	FREESCALE	pdf	1
TBGA Packaging Customer Tutorial	FREESCALE	pur	1
Product Briefs			
ID and Description	Vendor ID	Format	£
<u>MPC8349EPB</u>	FREESCALE	ndf	
MPC8349E Integrated Host Processor Product Brief	FREESCALE	pdf	
Product Numbering Scheme			
ID and Description	Vendor ID	Format	8
MPC834XEFAMPNS	FREESCALE	ndf	
MPC834XE Family Part Number Scheme	FREESCALE	pdf	
Reference Manuals			
ID and Description	Vendor ID	Format	S
E300CORERM	FREESCALE	ndf	2
e300 PowerPC Core Reference Manual	FREESCALE	pdf	2
MPC8349ERM			
MPC8349E PowerQUICC II Pro Integrated Host Processor Family Reference	FREESCALE	pdf	8
Manual			
MPCFPE32B			
Programming Environments Manual for 32-Bit Implementations of the	FREESCALE	pdf	2
PowerPC Architecture			
Reports or Presentations			
ID and Description	Vendor ID	Format	S
PQSECBKGRNDRPT			
Backgrounder: The Security Objectives of PowerQUICC Secure	FREESCALE	pdf	
Communications Processors			
PQSECCRYPTOPERFRPT	FREESCALE	pdf	
Understanding Cryptographic Performance	INLLOUALL	pur	

Users Guides			
ID and Description	Vendor ID	Format	S
SEC2SWUG SEC 2.0 Reference Device Driver User's Guide	FREESCALE	pdf	
SEC2XSWUG SEC 2.x Reference Device Driver Users Guide	FREESCALE	pdf	
White Papers			
ID and Description	Vendor ID	Format	S
NANDFLASHWP How to Interface the PowerQUICC II Pro and PowerQUICC III Local Bus Controller to NAND Flash	FREESCALE	pdf	
PUBLICKEYPERFWP Understanding Public-Key Performance	FREESCALE	pdf	

□ <u>Return to Top</u>

MPC8343E Design Tools Hardware Tools

Analyzers

Logic		
ID and Description	Vendor ID	Format
TLA715/TLA721		
TLA700 Logic Analyzers		
The TLA700 Logic Analyzers have the performance to capture and	TEKTRONIX	
display the fastest signals and gives you instant insight into the digital	<u>TEKTRONIA</u>	-
and analog behavior of your system so you can quickly find those elusive		
signal integrity problems		

Emulators/Probes/Wigglers			
ID and Description	Vendor ID	Format	S
<u>GUARDIAN-SE</u>			
Guardian-SE	TOOLSMITHS	-	
JTAG debug tools for PowerPC development			
PROBE			
Green Hills Probe & Slingshot	GREENHILLS	-	
High speed on-chipo download and run control.			
WRICE			
Wind River ICE			
The Wind River ICE is a JTAG hardware run control device supporting	WINDRIV	_	
multiple JTAG,EJTAG,and BDM devices on a single scan chain. It can			
support connections for up to eight devices simultaneously in a scan chain o	f		
up to 128 devices.			
Models			

Models

BSDL ID and Description <u>MPC834X_BSDL</u> MPC834x BSDL Models, rev 1.0 and rev 1.1 silicon Supports silicon revisons 1.0 and 1.1 (05/23/2005)	Vendor ID FREESCALE	Format zip
IBIS ID and Description	Vendor ID	Format
<u>MPC834X_IBIS</u> IBIS models for 8343E, 8347E, and 8349E Supports silicon revisions 1.0 and 1.1.(10/04/2005)	FREESCALE	zip

Software

Board Support Packages

ID and Description <u>INTEGRITY/VELOSITY/MULTI BSP</u>	Vendor ID	Format	£
Green Hills BSP The Green Hills BSP provides INTEGRITY & velOSity RTOSes and MULTI debugger for board- specific cross development through the Green Hills Probe, Slingshot or P&E Wiggler or, if no board is available, to the MULTI instruction set simulator.	<u>GREENHILLS</u>	-	
Device Drivers			
ID and Description	Vendor ID	Format	S
SEC2DRIVERS			
SEC 2.0 Device Drivers	FREESCALE	zip	
85xx/83xx SEC 2.0 Device Drivers (03/04/05)			
Libraries			
ID and Description	Vendor ID	Format	S
<u>DG06030101</u>			
Data Overwrite Detector	DOGAV	_	
An installable tool which detects an undesired overwrite. Includes a white-list of allowable accesses and data filtering.	DOGIN		
<u>DG1F030201</u>			
Exception Analyzer	DOGAV	_	
An installable tool which dumps critical registers and stack trace-back into a predefined memory area. Also, calls an application callback function.			
<u>DG1F030301</u>			
General Buffer Pool Manager			
Assembler based software that manages buffer pools. Supports pools initialization, allocation and release (free). Provides extended protection, such	DOGAV	-	
as double buffer release protection (can be disabled) and statistics counters.			
Operating Systems		_	
ID and Description	Vendor ID	Format	S
Tool Resell Agreement	CMX	-	
CMX TCP/IP			

CMX TCP/IP

Tool Resell Agreement CMX00300A	CMX
TCP/IP DHCP Client	
Tool Resell Agreement	CMX
TCP/IP DHCP Server	
Tool Resell Agreement	CMX
TCP/IP FTP C/S	
Tool Resell Agreement	CMX
TCP/IP IMAP4	
Tool Resell Agreement	CMX
TCP/IP NAT	
CMX00300F	
TCP/IP POP3 The CMX TCP/IP POP3 Client Add-On Option provides CMX TCP/IP (see	
CMX00300, CMX00305, or CMX00310) with functionality to support the	<u>CMX</u>
Post Office Protocol Client standard. A source code example is provided for	
Post Office Protocol Client standard. A source code example is provided for fast design start up.	СМХ
Post Office Protocol Client standard. A source code example is provided for fast design start up.	<u>CMX</u>
Post Office Protocol Client standard. A source code example is provided for fast design start up. Tool Resell Agreement CMX00300G TCP/IP PPP	
Post Office Protocol Client standard. A source code example is provided for fast design start up. Image: Tool Resell Agreement CMX00300G TCP/IP PPP CMX00300G	<u>CMX</u> <u>CMX</u>
Post Office Protocol Client standard. A source code example is provided for fast design start up. Tool Resell Agreement CMX00300G TCP/IP PPP Tool Resell Agreement CMX00300H TCP/IP PPPoE TOOL Resell Agreement	<u>CMX</u>
Post Office Protocol Client standard. A source code example is provided for fast design start up. Tool Resell Agreement CMX00300G TCP/IP PPP TOOl Resell Agreement CMX00300H TCP/IP PPPoE	
Post Office Protocol Client standard. A source code example is provided for fast design start up. Tool Resell Agreement CMX00300G TCP/IP PPP TOOl Resell Agreement CMX00300H TCP/IP PPPoE TOOl Resell Agreement CMX00300I TCP/IP SMTP TOOl Resell Agreement	<u>CMX</u> <u>CMX</u>
Post Office Protocol Client standard. A source code example is provided for fast design start up. Tool Resell Agreement CMX00300G TCP/IP PPP TOOl Resell Agreement CMX00300H TCP/IP PPPoE TOOl Resell Agreement CMX00300I TCP/IP SMTP	<u>CMX</u>
Post Office Protocol Client standard. A source code example is provided for fast design start up. Tool Resell Agreement CMX00300G TCP/IP PPP Tool Resell Agreement CMX00300H TCP/IP PPPoE Tool Resell Agreement CMX00300I TCP/IP SMTP Tool Resell Agreement CMX00300J	<u>CMX</u> <u>CMX</u>

-

-

-

-

-

Tool Resell Agreement CMX00300L	СМХ	_
TCP/IP TFTP		
Tool Resell Agreement CMX00300M	CMX	_
TCP/IP Web Client		
Tool Resell Agreement CMX00300N	СМХ	_
TCP/IP Web Server		
Tool Resell Agreement CMX00630	CMX	_
CMX-FFS		
Tool Resell Agreement CMX00631	CMX	_
CMX-FFS-NAND		
Tool Resell Agreement CMX00632	СМХ	_
CMX-FFS-FAT		
Tool Resell Agreement CMX00633	СМХ	_
CMX-FFS-THIN		
INTEGRITY DITECTION		
INTEGRITY INTEGRITY is a secure, royalty-free Real-Time Operating System intended		
for use in embedded systems that require total reliability and fast,	<u>GREENHILLS</u>	-
deterministic response time. Fully integrated with the MULTI environment		
and C/C+ compilers.		
VELOSITY velOSity		
The velOSity microkernel is small, fast and royalty free, perfect for cost-		
sensitive, high-volume embedded projects. Integrated with MULTI software	<u>GREENHILLS</u>	-
tools, it offers a rich set of kernel services, device drivers, BSPs and		
middleware.		
Protocol Stacks		

ID and Description

MOC_SSL_CLIENT

Mocana Embedded SSL/TLS Client MOCANA SSL/TLS CLIENT: Supports Freescale chipsets out of the box. Small (50KB), fast (2-3x faster than OpenSSL), trusted. Supports all major cryptos. Royalty free, source code license. FREE EVAL: http://www.mocana.com/evaluate.html

MOCANA

Software Tools

Compilers			
ID and Description	Vendor ID	Format	S
COMPILER			
$\overline{C/C++}$ Compiler	CDEENIIIIIIS		
Optimizing C, C++, EC++ compilers for Freescale PowerPC, ColdFire,	<u>GREENHILLS</u>	-	
StarCore, 68K, MCore and ARM-based MAC architectures.			
WIND RIVER COMPILER			
Wind River Compiler			
The Wind River Compiler combines industry leading optimization technology	WINDRIV	-	
with the flexibility and control needed to fully exploit Freescale CPUs.			
Development Suite			
ID and Description	Vendor ID	Format	S
LINUXLINK-DEVELOPER SUITE			
LinuxLink			
LinuxLink Developer Suite provides online and offline development and test	TIMESYS	_	
tools, a platform builder, and access to a Developer Exchange for additional		_	
documentation and resources, to speed your efforts to create your own Linux			
platform.			
IDE (Integrated Development Environment)			
ID and Description	Vendor ID	Format	S
MULTI			
MULTI	GREENHILLS	_	
MULTI is a complete integrated development environment for embedded	OKEENIILLO	-	
applications for C/C++, Embedded C++ and includes an advanced debugger,			

profiler, run-time memory checking, project builder, editor, instruction set simulator and more.

Initialization/Boot Code Generation ID and Description <u>MPC8560LBCUPMIBCG</u> UPM Tool for PowerQUICC III Processors (12/11/2003)	Vendor ID FREESCALE	Format S zip
Models		
Instruction Set Simulator ID and Description E300GENISS e300 Generic Library ISS for Solaris (09/06/2005)	Vendor ID FREESCALE	Format gz
<u>E300ISS</u> e300 Standalone ISS for Solaris (09/06/2005)	FREESCALE	gz
E300LINGENISS e300 Generic Library ISS for Linux PPC (09/06/2005)	FREESCALE	gz
E300LINISS e300 Standalone ISS for Linux PPC (09/06/2005)	FREESCALE	gz
E300LINX86GENISS e300 Generic Library ISS for Linux x86 (09/06/2005)	FREESCALE	gz
E300LINX86ISS e300 Standalone ISS for Linux x86 (09/06/2005)	FREESCALE	gz

Performance and Testing			
ID and Description	Vendor ID	Format	S

<u>KMfgTest</u>

300

Kozio's kMfgTest is a stand-alone embedded software application providing automated system-level test capabilities. It streamlines the testing of computer boards at the end of the production line.

kDiagnostics

100

kDiagnostics is powerful test software providing board-level diagnostics for embedded designs. As an easy to use turn-key solution, kDiagnostics reduces board bring-up times and saves development <u>KOZIO</u>

<u>KOZIO</u>

□ <u>Return to Top</u>

Orderable Parts Information

Order	Part Number	Package Description	Tape and Reel	Application/ Qualification <u>Tier</u>	Status	Budgetary Price QTY <u>1000+</u> (\$US)	<u>Pac</u> <u>P</u> <u>Tem</u> (
-	KMPC8343EVRAGD	PBGA 620 29*29*1.2P1.0	No	COMMERCIAL, INDUSTRIAL	Available	-	2
-	KMPC8343EZQAGD	<u>PBGA 620</u> 29*29*1.2P1.0	No	COMMERCIAL, INDUSTRIAL	Available	-	2
-	KMPC8343VRAGD	<u>PBGA 620</u> 29*29*1.2P1.0	No	COMMERCIAL, INDUSTRIAL	Available	-	2
-	MPC8343EVRADD	<u>PBGA 620</u> 29*29*1.2P1.0	No	COMMERCIAL, INDUSTRIAL	Available	-	2
		<u>PBGA 620</u>		COMMERCIAL,			

x Buy From Distributor	MPC8343EVRAGD	29*29*1.2P1.0	No	INDUSTRIAL	Available	_	<u>_</u>
	WII CO345E V KAOD	<u>PBGA 620</u>	INU	COMMERCIAL,	Available	-	2
-	MPC8343EZQADD	<u>29*29*1.2P1.0</u>	No		Available	-	2
Buy From Distributor	MPC8343EZQAGD	<u>PBGA 620</u> 29*29*1.2P1.0	No	COMMERCIAL, INDUSTRIAL	Available	-	2
Buy From Distributor	MPC8343VRADD	<u>PBGA 620</u> 29*29*1.2P1.0	No	COMMERCIAL, INDUSTRIAL	Available	-	2
-	MPC8343VRAGD	<u>PBGA 620</u> 29*29*1.2P1.0	No	COMMERCIAL, INDUSTRIAL	Available	-	2
-	MPC8343ZQADD	<u>PBGA 620</u> 29*29*1.2P1.0	No	COMMERCIAL, INDUSTRIAL	Available	-	2
-	MPC8343ZQAGD	<u>PBGA 620</u> 29*29*1.2P1.0	No	COMMERCIAL, INDUSTRIAL	Available	-	2

NOTE:

• Not all orderable parts are offered through our online sampling program. For further assistance in selecting a simila a Request for a sample order advice.

• Refer to <u>Samples FAQ</u> for more information.

• Looking for an obsolete part? Check our new part number search

 \Box <u>Return to Top</u>

Related Links

Link Freescale's Advanced Telecommunications Computing Architecture (ATCA)

Link Industrial Control

- Link PowerQUICC Communications Processors
- Link Security Processors

□ <u>Return to Top</u>

http://www.freescale.com/ Site Map Terms of Use Privacy	×
Practices What is this?	
© Freescale Semiconductor, Inc. 2004 - 2005. All Rights	
Reserved	
, E	